Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Nuclear Medicine Radiation Dosimetry
Details
Complexities of the requirements for accurate radiation dosimetry evaluation in both diagnostic and therapeutic nuclear medicine (including PET) have grown over the past decade. This is due primarily to four factors: Growing consideration of accurate patient-specific treatment planning for radionuclide therapy as a means of improving the therapeutic benefit, development of more realistic anthropomorphic phantoms and their use in estimating radiation transport and dosimetry in patients, Design and use of advanced Monte Carlo algorithms in calculating the above-mentioned radiation transport and dosimetry which require the user to have a thorough understanding of the theoretical principles used in such algorithms, their appropriateness and their limitations, increasing regulatory scrutiny of the radiation dose burden borne by nuclear medicine patients in the clinic and in the development of new radiopharmaceuticals, thus requiring more accurate and robust dosimetry evaluations. An element common to all four factors is the need for precise radiation dosimetry in nuclear medicine, which is fundamental to the therapeutic success of a patient undergoing radionuclide therapy and to the safety of the patients undergoing diagnostic nuclear medicine and PET procedures. As the complexity of internal radiation dosimetry applied to diagnostic and therapeutic nuclear medicine increases, this book will provide the theoretical foundations for: enabling the practising nuclear medicine physicist to understand the dosimetry calculations being used and their limitations, allowing the research nuclear medicine physicist to critically examine the internal radiation dosimetry algorithms available and under development; and providing the developers of Monte Carlo codes for the transport of radiation resulting from internal radioactive sources with the only comprehensive and definitive.
Provides a comprehensive detailed development of radiation transport to the user of Monte Carlo algorithms to understand their use in nuclear medicine applications Summarises in detail those aspects of nuclear physics and radioactivity required in nuclear medicine and enables the reader to understand the requirements for certain nuclei to be unstable and of use in nuclear medicine Simple graphics increase ease of reading and comprehension of text Includes supplementary material: sn.pub/extras
Autorentext
Brian J. McParland, BASc MSc PhD currently heads a commercial medical physics group based in the UK, Norway and India supporting clinical trials developing diagnostic radiopharmaceuticals, vascular contrast media and in vivo optical imaging agents. He is also an elected Fellow of the Canadian College of Physicists in Medicine, the Institute of Physics and Engineering in Medicine, UK and the Institute of Physics, UK.
Klappentext
The field of nuclear medicine is experiencing a transition where accurate dosimetry, approaching that required in external beam radiotherapy, may become the norm. Therapeutic applications are, by nature, patient-specific and bespoke calculations are required. It is becoming increasingly important for nuclear medicine practitioners to be able to administer such precise, carefully calculated doses to their patients, in both the diagnostic and therapeutic settings.
Nuclear Medicine Radiation Dosimetry provides a comprehensive account of the theoretical foundations for understanding the dosimetry calculations and internal radiation dosimetry algorithms as applied to both diagnostic and therapeutic nuclear medicine. It elucidates the reader to the theory that underlies the practice, and in doing so, enables more informed judgments and considerations when treating the patient.
Written by an authority in the field and laid out for easy consultation, Nuclear Medicine Radiation Dosimetry is an essential reference volume for nuclear medicine physicists in both clinical practice and research.
Brian J. McParland, BASc MSc PhD currently heads a commercial medical physics group based in the UK, Norway and India supporting clinical trials developing diagnostic radiopharmaceuticals, vascular contrast media and in vivo optical imaging agents. He is also an elected Fellow of the Canadian College of Physicists in Medicine, the Institute of Physics and Engineering in Medicine, UK and the Institute of Physics, UK.
Inhalt
The Role of Radiation Dosimetry in Nuclear Medicine.- Theoretical Tools.- Nuclear Properties, Structure, and Stability.- Radioactive Decay: Microscopic Theory.- Radioactive Decay: Macroscopic Theory.- Photon Interactions with Matter.- Charged Particle Interactions with Matter.- Radiation Fields and Radiometrics.- Radiation Dosimetry: Theory, Detection, and Measurement.- Biological Effects of Ionizing Radiation.- Nuclear Medicine Dosimetry.- Anthropomorphic Phantoms and Models of Biological Systems.- The Biodistribution (I): Preclinical.- The Biodistribution (II): Human.- The Biodistribution (III): Analysis.- The Ethics of Using Human Subjects in Clinical Trials Involving Radiopharmaceuticals.- The Future of Nuclear Medicine Radiation Dosimetry.
Weitere Informationen
- Allgemeine Informationen
- Sprache Englisch
- Autor Brian J McParland
- Titel Nuclear Medicine Radiation Dosimetry
- Veröffentlichung 20.05.2010
- ISBN 1848821255
- Format Fester Einband
- EAN 9781848821255
- Jahr 2010
- Größe H266mm x B198mm x T44mm
- Untertitel Advanced Theoretical Principles
- Gewicht 1704g
- Auflage 2010
- Genre Medizin
- Lesemotiv Verstehen
- Anzahl Seiten 644
- Herausgeber Springer London
- GTIN 09781848821255