Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Numerical Study of Solutions to Prandtl Equations and N-S Equations
Details
The IGR method enables us to study the singular
structures of the blow up solutions of Prandtl
equations. The numerical solutions
to the incompressible Navier-Stokes equations with
Navier boundary conditions are discussed. An
unconditionally stable time discretization which is
implicit in viscosity and explicit in both pressure
and convection terms and finite difference
discretization with local pressure boundary
condition are employed. A two level
preconditioned conjugate gradient method is
introdeced to solve the elliptic type system.
Autorentext
I am now a postdoc in The Hong Kong University of Science and Technology.
Klappentext
The IGR method enables us to study the singular structures of the blow up solutions of Prandtl equations. The numerical solutionsto the incompressible Navier-Stokes equations with Navier boundary conditions are discussed. An unconditionally stable time discretization which is implicit in viscosity and explicit in both pressure and convection terms and finite difference discretization with local pressure boundarycondition are employed. A two levelpreconditioned conjugate gradient method is introdeced to solve the elliptic type system.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783639182224
- Sprache Englisch
- Größe H220mm x B150mm x T7mm
- Jahr 2009
- EAN 9783639182224
- Format Kartonierter Einband (Kt)
- ISBN 978-3-639-18222-4
- Titel Numerical Study of Solutions to Prandtl Equations and N-S Equations
- Autor Qiaolin He
- Untertitel Numerical Simulation
- Gewicht 183g
- Herausgeber VDM Verlag
- Anzahl Seiten 112
- Genre Mathematik