o-minimal theory

CHF 46.40
Auf Lager
SKU
EI9PP95PBVP
Stock 1 Verfügbar
Shipping Kostenloser Versand ab CHF 50
Geliefert zwischen Mi., 08.10.2025 und Do., 09.10.2025

Details

High Quality Content by WIKIPEDIA articles! In mathematical logic, and more specifically in model theory, an infinite structure (M,,...) which is totally ordered by is called an o-minimal structure if and only if every definable subset X M (with parameters taken from M) is a finite union of intervals and points. O-minimality can be regarded as a weak form of quantifier elimination. A structure M is o-minimal if and only if every formula with one free variable and parameters in M is equivalent to a quantifier-free formula involving only the ordering, also with parameters in M. This is analogous to the minimal structures, which are exactly the analogous property down to equality. A theory T is an o-minimal theory if every model of T is o-minimal. One can show that the complete theory T of an o-minimal structure is an o-minimal theory. This result is remarkable because the complete theory of a minimal structure need not be a strongly minimal theory, that is, there may be an elementarily equivalent structure which is not minimal.
Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786130336479
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • Sprache Englisch
    • Größe H216mm x B148mm x T8mm
    • Jahr 2010
    • EAN 9786130336479
    • Format Fachbuch
    • ISBN 978-613-0-33647-9
    • Titel o-minimal theory
    • Untertitel Mathematical Logic, Model Theory, Total Order, Interval, Quantifier Elimination, Strongly Minimal Theory, Semialgebraic Set, Weakly o-minimal Structure
    • Gewicht 130g
    • Herausgeber Betascript Publishers
    • Anzahl Seiten 76
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.