Odd Number Theorem

CHF 48.85
Auf Lager
SKU
7CP5L6PH4R1
Stock 1 Verfügbar
Geliefert zwischen Mi., 04.02.2026 und Do., 05.02.2026

Details

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. The odd number theorem is a theorem in strong gravitational lensing which comes directly from differential topology. It says that the number of multiple images produced by a bounded transparent lens must be odd. In fact, the gravitational lensing is a mapping from image plane to source plane M: (u,v) mapsto (u'',v''),. If we use direction cosines describing the bended light rays, we can write a vector field on (u,v), plane V:(s,w),. However, only in some specific directions V0:(s0,w0),, the bended light rays will reach the observer, i.e., the images only forms at where D=delta V=0 {(s0,w0)}. Then we can directly apply Poincaré Hopf theorem chi=sum text{index}D = text{constant},. The index of sources and sinks is +1, and that of saddle points is 1. So the Euler characteristic equals the difference between the number of positive indice n{+}, and the number of negative indice n{-},. For the far field case, there is only one image, i.e., chi=n{+}-n{-}=1,. So the total number of images is N=n{+}+n{-}=2n{-}+1 ,, i.e., odd. The strict proof needs Uhlenbeck''s Morse theory of null geodesics.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131310430
    • Editor Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow
    • Größe H220mm x B220mm
    • EAN 9786131310430
    • Format Fachbuch
    • Titel Odd Number Theorem
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 108
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38