Offline Handwritten Signature Verification Method

CHF 41.45
Auf Lager
SKU
BU8PGJUPESG
Stock 1 Verfügbar
Geliefert zwischen Fr., 21.11.2025 und Mo., 24.11.2025

Details

Natural immune system offers several fascinating options that motivated the planning of Artificial Immune Systems (AIS) accustomed solve varied issues of engineering and Artificial Intelligence (AI). AIS are significantly thriving in fault detection and diagnosing applications where anomalies like errors and failures are assimilated to viruses that ought to be detected. Thereby, AIS appear appropriate to automatically discover forgeries in signature verification systems. This work proposes a technique for offline signature verification that's supports the artificial Immune Recognition System (AIRS) and Artificial Neural Network (ANN) utilized in verification stage. For feature generation, two totally different descriptors are projected to get signature traits. the primary is that the Gaussian pyramid used for texture synthesis that is very redundant, coarse scales offer a lot of the data within the finer scales and Laplacian pyramid Seamlessly stitch along images into an image plaid (i.e., register the photographs and blurring the boundary), by smoothing the boundary in a very scale-dependent style to avoid boundary artefacts.

Autorentext

A Dra. Reecha Sharma trabalha como Professora Assistente no Departamento de ECE da Universidade de Punjabi, Patiala, Índia. Tem onze anos de experiência de ensino. Publicou mais de 60 artigos de investigação em revistas e conferências internacionais/nacionais. Orientou 23 estudantes de M.Tech e publicou 7 livros electrónicos. É membro profissional do Instituto.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786202060417
    • Genre Electrical Engineering
    • Sprache Englisch
    • Anzahl Seiten 72
    • Herausgeber LAP LAMBERT Academic Publishing
    • Größe H220mm x B150mm x T5mm
    • Jahr 2017
    • EAN 9786202060417
    • Format Kartonierter Einband
    • ISBN 6202060417
    • Veröffentlichung 12.10.2017
    • Titel Offline Handwritten Signature Verification Method
    • Autor Reecha Sharma , Jasmeet Kaur
    • Untertitel Based on Artificial Immune Recognition System and Artificial Neural Network
    • Gewicht 125g

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470