Online Appearance-Based Place Recognition and Mapping

CHF 137.10
Auf Lager
SKU
H8BUGCAVT2N
Stock 1 Verfügbar
Geliefert zwischen Mi., 31.12.2025 und Do., 01.01.2026

Details

This book introduces several appearance-based place recognition pipelines based on different mapping techniques for addressing loop-closure detection in mobile platforms with limited computational resources. The motivation behind this book has been the prospect that in many contemporary applications efficient methods are needed that can provide high performance under run-time and memory constraints. Thus, three different mapping techniques for addressing the task of place recognition for simultaneous localization and mapping (SLAM) are presented. The book at hand follows a tutorial-based structure describing each of the main parts needed for a loop-closure detection pipeline to facilitate the newcomers. It mainly goes through a historical review of the problem, focusing on how it was addressed during the years reaching the current age. This way, the reader is initially familiarized with each part while the place recognition paradigms follow.


Inhalt
The revisiting problem in simultaneous localization and mapping.- Benchmarking.- Probabilistic appearance-based place recognition through hierarchical mapping.- Dynamic places' denition for sequence-based visual place recognition.- Modest-vocabulary loop-closure detection with incremental bag of Tracked words.- Open challenges and conclusion.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783031093951
    • Lesemotiv Verstehen
    • Genre Electrical Engineering
    • Auflage 1st edition 2022
    • Sprache Englisch
    • Anzahl Seiten 136
    • Herausgeber Springer International Publishing
    • Größe H241mm x B160mm x T14mm
    • Jahr 2022
    • EAN 9783031093951
    • Format Fester Einband
    • ISBN 303109395X
    • Veröffentlichung 02.09.2022
    • Titel Online Appearance-Based Place Recognition and Mapping
    • Autor Konstantinos A. Tsintotas , Antonios Gasteratos , Loukas Bampis
    • Untertitel Their Role in Autonomous Navigation
    • Gewicht 377g

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470