Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Ophthalmic Medical Image Analysis
Details
This book constitutes the refereed proceedings of the 6th International Workshop on Ophthalmic Medical Image Analysis, OMIA 2019, held in conjunction with the 22nd International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2019, in Shenzhen, China, in October 2019.
The 22 full papers (out of 36 submissions) presented at OMIA 2019 were carefully reviewed and selected. The papers cover various topics in the field of ophthalmic image analysis.
Inhalt
Dictionary Learning Informed Deep Neural Network with Application to OCT Images.- Structure-aware Noise Reduction Generative Adversarial Network for Optical Coherence Tomography Image.- Region-Based Segmentation of Capillary Density in Optical Coherence Tomography Angiography.- An amplied-target loss approach for photoreceptor layer segmentation in pathological OCT scans.- Foveal avascular zone segmentation in clinical routine uorescein angiographies using multitask learning.- Guided M-Net for High-resolution Biomedical Image Segmentation with Weak Boundaries.- 3D-CNN for Glaucoma Detection using Optical Coherence Tomography.- Semi-supervised Adversarial Learning for Diabetic Retinopathy Screening.- Shape Decomposition of Foveal Pit Morphology using Scan Geometry Corrected OCT.- U-Net with spatial pyramid pooling for drusen segmentation in optical coherence tomography.- Deriving Visual Cues from Deep Learning to Achieve Subpixel Cell Segmentation in Adaptive Optics Retinal Images.- Robust Optic Disc Localization by Large Scale Learning.- The Channel Attention based Context Encoder Network for Inner Limiting Membrane Detections.- Fundus Image based Retinal Vessel Segmentation Utilizing A Fast and Accurate Fully Convolutional Network.- Network pruning for OCT image classication.- An improved MPB-CNN segmentation method for edema area and neurosensory retinal detachment in SD-OCT images.- Encoder-Decoder Attention Network for Lesion Segmentation of Diabetic Retinopathy.- Multi-Discriminator Generative Adversarial Networks for improved thin retinal vessel segmentation.- Fovea Localization in Fundus Photographs by Faster R-CNN with Physiological Prior.- Aggressive Posterior Retinopathy of Prematurity Automated Diagnosis via a Deep Convolutional Network.- Automated Stage Analysis of Retinopathy of Prematurity Using Joint Segmentation and Multi-Instance Learning.- Retinopathy Diagnosis using Semi-supervised Multi-channel Generative Adversarial Network.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783030329556
- Auflage 1st edition 2019
- Editor Huazhu Fu, Mona K. Garvin, Yalin Zheng, Yanwu Xu, Tom Macgillivray
- Sprache Englisch
- Genre Anwendungs-Software
- Größe H235mm x B155mm x T12mm
- Jahr 2019
- EAN 9783030329556
- Format Kartonierter Einband
- ISBN 3030329550
- Veröffentlichung 18.10.2019
- Titel Ophthalmic Medical Image Analysis
- Untertitel 6th International Workshop, OMIA 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 17, Proceedings
- Gewicht 318g
- Herausgeber Springer International Publishing
- Anzahl Seiten 204
- Lesemotiv Verstehen