Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Optimal portfolio selection in stochastic environment
Details
In this dissertation, we consider a particular case of an optimal consumption and portfolio selection problem for an innitely lived investor whose consumption rate process is subject to downside constraint. We also suppose that the wealth dynamics is composed of three assets (i) riskless assets (ii) risky assets (iii) hedge assets. We consider the investor's wealth process, interpreted in the sense of the It^o integral.Our work aims to find the optimal policies which maximize the expected discount utility function.Furthermore, we obtain the optimal policies in an explicit form for the log utility function which is a special case of the general utility (CRRA) function, using the martingale method and applying the Legendre transform formula and the Feynman-kac formula. We derive some numerical results for the optimal policies and compare the results with the classical Merton's result evaluated for an innite horizon case.
Autorentext
Dr. Karan Singh Thagunna, Kathmandu, Nepal; Education: PhD, University of Alabama, MSc, TU, Kathmandu Nepal.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783838353975
- Sprache Englisch
- Größe H220mm x B150mm x T7mm
- Jahr 2010
- EAN 9783838353975
- Format Kartonierter Einband
- ISBN 3838353978
- Veröffentlichung 31.03.2010
- Titel Optimal portfolio selection in stochastic environment
- Autor Karan Thagunna
- Untertitel Three Assets Model for portfolio selection under a constrained consumption rate process
- Gewicht 185g
- Herausgeber LAP LAMBERT Academic Publishing
- Anzahl Seiten 112
- Genre Mathematik