Optimization of PID Controllers Using Ant Colony and Genetic Algorithms

CHF 131.15
Auf Lager
SKU
HTTD5QF4ADK
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

This book covers the theory behind artificial neural networks, genetic algorithms and the ant colony optimization algorithm, and presents a novel real time control algorithm using genetic and ant colony optimization algorithms for optimizing PID controllers.

Artificial neural networks, genetic algorithms and the ant colony optimization algorithm have become a highly effective tool for solving hard optimization problems. As their popularity has increased, applications of these algorithms have grown in more than equal measure. While many of the books available on these subjects only provide a cursory discussion of theory, the present book gives special emphasis to the theoretical background that is behind these algorithms and their applications. Moreover, this book introduces a novel real time control algorithm, that uses genetic algorithm and ant colony optimization algorithms for optimizing PID controller parameters. In general, the present book represents a solid survey on artificial neural networks, genetic algorithms and the ant colony optimization algorithm and introduces novel practical elements related to the application of these methods to process system control.


Novel optimization methods for process system control A novel real time control algorithm, that uses Genetic Algorithm (GA) and Ant Colony Optimization (ACO) algorithm for optimizing PID controller parameters Artificial neural networks for modelling complex and non-linear systems

Inhalt
Artificial Neural Networks.- Genetic Algorithm.- Ant Colony Optimization (ACO).- An Application for Process System Control.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783642434778
    • Auflage 2013
    • Sprache Englisch
    • Genre Allgemeines & Lexika
    • Lesemotiv Verstehen
    • Größe H235mm x B155mm x T7mm
    • Jahr 2014
    • EAN 9783642434778
    • Format Kartonierter Einband
    • ISBN 3642434770
    • Veröffentlichung 15.10.2014
    • Titel Optimization of PID Controllers Using Ant Colony and Genetic Algorithms
    • Autor Muhammet Ünal , Hasan Erdal , Vedat Topuz , Ayça Ak
    • Untertitel Studies in Computational Intelligence 449
    • Gewicht 178g
    • Herausgeber Springer Berlin Heidelberg
    • Anzahl Seiten 108

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470