Optimization Techniques in Computer Vision

CHF 177.75
Auf Lager
SKU
MBB1CO7S2L3
Stock 1 Verfügbar
Geliefert zwischen Fr., 26.12.2025 und Mo., 29.12.2025

Details

This book presents practical optimization techniques used in image processing and computer vision problems. Ill-posed problems are introduced and used as examples to show how each type of problem is related to typical image processing and computer vision problems. Unconstrained optimization gives the best solution based on numerical minimization of a single, scalar-valued objective function or cost function. Unconstrained optimization problems have been intensively studied, and many algorithms and tools have been developed to solve them. Most practical optimization problems, however, arise with a set of constraints. Typical examples of constraints include: (i) pre-specified pixel intensity range, (ii) smoothness or correlation with neighboring information, (iii) existence on a certain contour of lines or curves, and (iv) given statistical or spectral characteristics of the solution. Regularized optimization is a special method used to solve a class of constrained optimization problems.The term regularization refers to the transformation of an objective function with constraints into a different objective function, automatically reflecting constraints in the unconstrained minimization process. Because of its simplicity and efficiency, regularized optimization has many application areas, such as image restoration, image reconstruction, optical flow estimation, etc.
Optimization plays a major role in a wide variety of theories for image processing and computer vision. Various optimization techniques are used at different levels for these problems, and this volume summarizes and explains these techniques as applied to image processing and computer vision.

Features a comprehensive description of regularization through optimization Contains a large selection of data fusion algorithms Includes chapters devoted to video compression and enhancement Includes supplementary material: sn.pub/extras

Inhalt
Ill-Posed Problems in Imaging and Computer Vision.- Selection of the Regularization Parameter.- Introduction to Optimization.- Unconstrained Optimization.- Constrained Optimization.- Frequency-Domain Implementation of Regularization.- Iterative Methods.- Regularized Image Interpolation Based on Data Fusion.- Enhancement of Compressed Video.- Volumetric Description of Three-Dimensional Objects for Object Recognition.- Regularized 3D Image Smoothing.- Multi-Modal Scene Reconstruction Using Genetic Algorithm-Based Optimization.- Appendix A: Matrix-Vector Representation for Signal Transformation.- Appendix B: Discrete Fourier Transform.- Appendix C: 3D Data Acquisition and Geometric Surface Reconstruction.- Appendix D: Mathematical Appendix.- Index.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783319463636
    • Herausgeber Springer International Publishing
    • Anzahl Seiten 312
    • Lesemotiv Verstehen
    • Genre Software
    • Auflage 1st edition 2016
    • Sprache Englisch
    • Gewicht 635g
    • Untertitel Ill-Posed Problems and Regularization
    • Autor Mongi A. Abidi , Joonki Paik , Andrei V. Gribok
    • Größe H241mm x B160mm x T23mm
    • Jahr 2016
    • EAN 9783319463636
    • Format Fester Einband
    • ISBN 3319463632
    • Veröffentlichung 16.12.2016
    • Titel Optimization Techniques in Computer Vision

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470