Optimized Convolution Neural Network (OCNN) for VBSLR

CHF 69.10
Auf Lager
SKU
I4EPR2KM1ED
Stock 1 Verfügbar
Geliefert zwischen Mi., 24.12.2025 und Do., 25.12.2025

Details

Human-computer-interactions (HCI) are very helpful for current technology world. Later the trendy data policies restrict the instinctive nature & velocity of HCI use, the sign language acknowledgement framework has multiplied many significances. Completely one of a kind sign language is frequently accustomed to specific intentions and intonations or for dominant units like domestic robots. In Previous work, ICNN was once in contrast to a baseline CNN and in preceding work OCNN gain 99.96% recognition rate. The foremost centre of attention of this evaluation is to enhance the loss and execution time of ICNN model by using optimizing the preference for alternate OCNN. New model is improving configuration by applying optimizing function in bottom layer. Due to the fact it is previously acknowledged, one optimizer will never give higher accuracy for all situation. The desire for the optimizer to be created through thinking about the variability of facts and consequently the nonlinearity degree of the connection designs that happen inside the facts. As a result of the theoretical calculation isn't always sufficient to work out the easiest optimization function.

Autorentext

Dr Suman Kumar Swanrkar received a M.Tech. degree in 2015 from the Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, India. He received Ph.D. (CSE) degree in 2021 from Kalinga University, Nayaraipur, India. He has co-authored more than 30 journal articles including WOS & Scopus papers and 5 conference articles.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786203927931
    • Herausgeber LAP LAMBERT Academic Publishing
    • Anzahl Seiten 120
    • Genre Software
    • Sprache Englisch
    • Gewicht 197g
    • Untertitel Optimized Convolution Neural Network (OCNN) for Voice-Based Sign Language Recognition: Optimization & Regularization
    • Autor Suman Kumar Swarnkar , Asha Ambhaikar , Virendra Kumar Swarnkar
    • Größe H220mm x B150mm x T8mm
    • Jahr 2021
    • EAN 9786203927931
    • Format Kartonierter Einband
    • ISBN 6203927937
    • Veröffentlichung 29.06.2021
    • Titel Optimized Convolution Neural Network (OCNN) for VBSLR

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470