OR 2.0 Context-Aware Operating Theaters and Machine Learning in Clinical Neuroimaging

CHF 71.85
Auf Lager
SKU
3AFLQ96IUQ3
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

This book constitutes the refereed proceedings of the Second International Workshop on Context-Aware Surgical Theaters, OR 2.0 2019, and the Second International Workshop on Machine Learning in Clinical Neuroimaging, MLCN 2019, held in conjunction with MICCAI 2019, in Shenzhen, China, in October 2019.

For OR 2.0 all 6 submissions were accepted for publication. They aim to highlight the potential use of machine vision and perception, robotics, surgical simulation and modeling, multi-modal data fusion and visualization, image analysis, advanced imaging, advanced display technologies, human-computer interfaces, sensors, wearable and implantable electronics and robots, visual attention models, cognitive models, decision support networks to enhance surgical procedural assistance, context-awareness and team communication in the operating theater, human-robot collaborative systems, and surgical training and assessment.

MLCN 2019 accepted 6 papers out of 7 submissions for publication. They focus on addressing the problems of applying machine learning to large and multi-site clinical neuroimaging datasets. The workshop aimed to bring together experts in both machine learning and clinical neuroimaging to discuss and hopefully bridge the existing challenges of applied machine learning in clinical neuroscience.

Chapter 5 is available open access under a Creative Commons Attribution 4.0 International License via Springerlink.


Inhalt

Proceedings of the Second International Workshop on OR 2.0 Context-Aware Operating Theaters (OR 2.0 2019).- Feature Aggregation Decoder for Segmenting Laparoscopic Scenes.- Preoperative Planning for Guidewires employing Shape-Regularized Segmentation and Optimized Trajectories.- Guided unsupervised desmoking of laparoscopic images using Cycle-Desmoke.- Unsupervised Temporal Video Segmentation as an Auxiliary Task for Predicting the Remaining Surgery Duration.- Live monitoring of hemodynamic changes with multispectral image analysis.- Towards a Cyber-Physical Systems Based Operating Room of the Future.- Proceedings of the Second International Workshop on Machine Learning in Clinical Neuroimaging: Entering the era of big data via transfer learning and data harmonization (MLCN 2019).- Deep Transfer Learning For Whole-Brain FMRI Analyses.- Knowledge distillation for semi-supervised domain adaptation.- Relevance Vector Machines for harmonization of MRI brain volumes using image descriptors.- Data Pooling and Sampling of Heterogeneous Image Data for White Matter Hyperintensity Segmentation.- A Hybrid 3DCNN and 3DC-LSTM based model for 4D Spatio-temporal fMRI data: An ABIDE Autism Classification study.- Automated Quantification of Enlarged Perivascular Spaces in Clinical Brain MRI across Sites.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783030326944
    • Auflage 2019
    • Editor Luping Zhou, Anand Malpani, Duygu Sarikaya, Seyed Mostafa Kia, Stefanie Speidel, Hongzhi Wang, Daniel Hashimoto, Mohamad Habes, Tommy Löfstedt, Kerstin Ritter
    • Sprache Englisch
    • Genre Anwendungs-Software
    • Größe H235mm x B155mm x T8mm
    • Jahr 2019
    • EAN 9783030326944
    • Format Kartonierter Einband
    • ISBN 3030326942
    • Veröffentlichung 11.10.2019
    • Titel OR 2.0 Context-Aware Operating Theaters and Machine Learning in Clinical Neuroimaging
    • Untertitel Second International Workshop, OR 2.0 2019, and Second International Workshop, MLCN 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13 and 17, 2019, Proceedings
    • Gewicht 213g
    • Herausgeber Springer International Publishing
    • Anzahl Seiten 132
    • Lesemotiv Verstehen

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470