Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Order of a group, acting on a compact Riemann surface of genus g 2
Details
Now a days, the theory of Riemann surfaces occupies a very special place in mathematics. The basic idea of a Riemann surface is that it is a space which, locally, looks just like an open set in complex plane. First we start preliminaries from set topology and complex analysis, and then we will deal with the construction part of Riemann surface. Next we will present the survey of function theory in the complex plane, the definition of holomorphic and meromorphic functions in Riemann surface. After that we will give a bound to the cardinality of the group, depending on the genus, which act holomorphically and effectively on a compact Riemann surface of genus greater then equal to two. This bound will be obtained from Hurwitz's theorem which can be generalized to be an upper bound to the cardinality of the automorphism group of any Riemann surface of genus greater than equal to two.
Autorentext
2015-Now:Doctor of Philosophy, Indian Institute of Technology Guwahati.2013-2015: Masters of Science, Indian Institute of Technology Guwahati, Specialized in Maths and Computing.Award getting from Ministry of Human Research and Development, Govt. of India.* Received Merit-cum-Means Scholarship from both of West Bengal govt and IIT Guwahati
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783659690761
- Anzahl Seiten 52
- Genre Self Help & Development
- Herausgeber LAP LAMBERT Academic Publishing
- Gewicht 96g
- Größe H3mm x B150mm x T220mm
- Jahr 2016
- EAN 9783659690761
- Format Kartonierter Einband
- ISBN 978-3-659-69076-1
- Titel Order of a group, acting on a compact Riemann surface of genus g 2
- Autor Rakesh Jana
- Sprache Englisch