Order Topology

CHF 43.15
Auf Lager
SKU
NGAP01TQ8IM
Stock 1 Verfügbar
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026

Details

High Quality Content by WIKIPEDIA articles! In mathematics, an order topology is a certain topology that can be defined on any totally ordered set. It is a natural generalization of the topology of the real numbers to arbitrary totally ordered sets.Though the subspace topology of Y = { 1} {1/n}n N in the section above is shown to be not generated by the induced order on Y, it is nonetheless an order topology on Y; indeed, in the subspace topology every point is isolated (i.e., singleton {y} is open in Y for every y in Y), so the subspace topology is the discrete topology on Y (the topology in which every subset of Y is an open set), and the discrete topology on any set is an order topology. To define a total order on Y that generates the discrete topology on Y, simply modify the induced order on Y by defining -1 to be the greatest element of Y and otherwise keeping the same order for the other points, so that in this new order (call it say 1) we have 1/n 1 1 for all n N. Then, in the order topology on Y generated by 1, every point of Y is isolated in Y.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131296642
    • Editor Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow
    • EAN 9786131296642
    • Format Fachbuch
    • Titel Order Topology
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 88
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38