Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Origin of Turbulence
Details
This book presents the new discovery of the origin of turbulence from NavierStokes equations. The fully developed turbulence is found to be composed of singularities of flow field. The mechanisms of flow stability and turbulent transition are described using the energy gradient theory, which states all the flow instability and breakdown resulted from the gradient of the total mechanical energy normal to the flow direction. This approach is universal for flow instability in Newtonian flow and non-Newtonian flow. The theory has been used to solve several problems, such as plane and pipe Poiseuille flows, plane Couette flow, TaylorCouette flow, flows in straight coaxial annulus, flows in curved pipes and ducts, thermal convection flow, viscoelastic flow, and magnet fluid flow, etc. The theory is in agreement with results from numerical simulations and experiments. The analytical method used in this book is novel and is different from the traditional approaches. This book includes the fundamental basics of flow stability and turbulent transition, the essentials of the energy gradient theory, and the applications of the theory to several practical problems. This book is suitable for researchers and graduate students.
Provides discovery of the origin of turbulence from NavierStokes equations Turbulence is found to be composed of singularities of flow field Explains the mechanism of flow stability by energy gradient theory
Autorentext
Dr. Hua-Shu Dou received his Ph.D. from Beijing University of Aeronautics and Astronautics in 1991. Then, he worked at Tsinghua University, The University of Sydney, and National University of Singapore from 1991 to 2011. Since 2011, he is a chair professor at Zhejiang Sci-Tech University. His researches focused on flow instability and turbulent transition, computational fluid dynamics, combustion and detonation, turbomachinery, non-Newtonian flow and multiphase flows, etc. He holds more than 160 published papers and one co-authored book published by Springer. He is an AIAA associate fellow and Member of APS and ASME.
Inhalt
Introduction.- Equations of Fluid Flow.- Fundamental of Stability of Parallel Flows.- Energy Gradient Theory for Parallel Flow Stability.- Turbulent Transition through Velocity Discontinuity.- Stability of Boundary Layer Flow.- Scaling of Disturbance for Turbulent Transition and Turbulence.- Stability in Flows for Nonparallel (Curved) Flows.- Stability of Taylor- Couette flow between Concentric Rotating Cylinders.- Methods for Prediction of Turbulent Transition.- Stability of Flow in Curved Duct and Pipe.- Stability of Flow in Wake behind Circular Cylinder.- Stability of Some Complex Vortex Flows.- Stability of Thermal Convection.- Stability of Some non-Newtonian Fluid Flows.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09789811900860
- Lesemotiv Verstehen
- Genre Mechanical Engineering
- Auflage 1st edition 2022
- Sprache Englisch
- Anzahl Seiten 516
- Herausgeber Springer Nature Singapore
- Größe H241mm x B160mm x T34mm
- Jahr 2022
- EAN 9789811900860
- Format Fester Einband
- ISBN 9811900868
- Veröffentlichung 29.03.2022
- Titel Origin of Turbulence
- Autor Hua-Shu Dou
- Untertitel Energy Gradient Theory
- Gewicht 934g