Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Orthogonal Group
Details
Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In mathematics, the orthogonal group of degree n over a field F (written as O(n,F)) is the group of n-by-n orthogonal matrices with entries from F, with the group operation that of matrix multiplication. More generally the orthogonal group of a non-singular quadratic form over F is the group of linear operators preserving the form (the above group O(n,F) is then the orthogonal group of the sum-of-n-squares quadratic form). The Cartan Dieudonné theorem describes the structure of the orthogonal group.
Klappentext
High Quality Content by WIKIPEDIA articles! In mathematics, the orthogonal group of degree n over a field F (written as O(n,F)) is the group of n-by-n orthogonal matrices with entries from F, with the group operation that of matrix multiplication. More generally the orthogonal group of a non-singular quadratic form over F is the group of linear operators preserving the form (the above group O(n,F) is then the orthogonal group of the sum-of-n-squares quadratic form). The Cartan-Dieudonné theorem describes the structure of the orthogonal group.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130316167
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- Sprache Englisch
- Größe H220mm x B220mm
- Jahr 2009
- EAN 9786130316167
- Format Fachbuch
- ISBN 978-613-0-31616-7
- Titel Orthogonal Group
- Untertitel Orthogonal Matrix, Matrix Multiplication, Subgroup, General Linear Group, Transpose, Quadratic Form, Determinant, Normal Subgroup, Algebraic Group, Identity Matrix, Cyclic Group
- Herausgeber Betascript Publishers
- Anzahl Seiten 100
- Genre Mathematik