Ostrowski's Theorem

CHF 49.05
Auf Lager
SKU
5CD15FPO599
Stock 1 Verfügbar
Geliefert zwischen Fr., 30.01.2026 und Mo., 02.02.2026

Details

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. Ostrowski''s theorem, due to Alexander Ostrowski, states that any non-trivial absolute value on the rational numbers Q is equivalent to either the usual real absolute value or a p-adic absolute value. Since is non-Archimedean, n 1 for all integers n. Also as is non-trivial, there exists an integer n such that n 1 and n = p1^{e1} ldots pr^{er} by integer factorization. From this, we can deduce p 1 for some prime p. Suppose for contradiction p, q are distinct primes with p , q 1. Pick e, f such that p e, q f 1 and write 1 = rpe + sqf for some integers r, s by Bézout''s identity. But then 1 = rpe + sqf max( r , s ) 1, which is a desired contradiction. So must have p = , some 0 1, and q = 1 for all other primes q. Therefore is equivalent to the p-adic absolute value.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131298370
    • Editor Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow
    • Größe H220mm x B220mm
    • EAN 9786131298370
    • Format Fachbuch
    • Titel Ostrowski's Theorem
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 104
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38