Outlier Detection Methods

CHF 68.75
Auf Lager
SKU
4726IFQQTNJ
Stock 1 Verfügbar
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026

Details

Outlier, abnormal or unusual observation can be defined as an observation that lies outside the overall pattern of a distribution. Diagnostic methods for identifying a single outlier or influential observation in a linear regression model are relatively simple from both analytical and computational points of view. However, if the data set contains more than one outlier, which is likely to be the case in most data sets, the problem of identifying such observations becomes more difficult because of the masking and swamping effects. A GA was allowed simultaneous detection of outliers in data sets. Thus, this method is to overcome the problems of masking and swamping effects. It is derived additional penalized value of information criteria for Akaike Information Criterion (AIC) and Information Complexity Criterion (ICOMP) and named as AIC' and ICOMP' respectively in this study. The numerical example and simulation results clearly show a much improved performance of the proposed approach in comparison to existing method especially followed by applying the ICOMP' approach in order to accurately (robustly) detect the outliers.

Autorentext

Her PhD thesis is related to Genetic Algorithm based Outlier Detection Using Information Criterion. She is interested in data mining, genetic algorithm, artificial intelligence, information criteria, outlier detection, and robust regression.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783838318479
    • Sprache Englisch
    • Größe H220mm x B150mm x T10mm
    • Jahr 2010
    • EAN 9783838318479
    • Format Kartonierter Einband
    • ISBN 3838318471
    • Veröffentlichung 04.03.2010
    • Titel Outlier Detection Methods
    • Autor Özlem Gürünlü Alma
    • Untertitel Genetic Algorithms Based Outlier Detection using Information Criteria
    • Gewicht 250g
    • Herausgeber LAP LAMBERT Academic Publishing
    • Anzahl Seiten 156
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38