Padé Methods for Painlevé Equations

CHF 85.15
Auf Lager
SKU
3O8RV9EOO16
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

The isomonodromic deformation equations such as the Painlevé and Garnier systems are an important class of nonlinear differential equations in mathematics and mathematical physics. For discrete analogs of these equations in particular, much progress has been made in recent decades. Various approaches to such isomonodromic equations are known: the Painlevé test/Painlevé property, reduction of integrable hierarchy, the Lax formulation, algebro-geometric methods, and others. Among them, the Padé method explained in this book provides a simple approach to those equations in both continuous and discrete cases.
For a given function f(x), the Padé approximation/interpolation supplies the rational functions P(x), Q(x) as approximants such as f(x)~P(x)/Q(x). The basic idea of the Padé method is to consider the linear differential (or difference) equations satisfied by P(x) and f(x)Q(x). In choosing the suitable approximation problem, the linear differential equations give the Lax pair for some isomonodromic equations. Although this relation between the isomonodromic equations and Padé approximations has been known classically, a systematic study including discrete cases has been conducted only recently. By this simple and easy procedure, one can simultaneously obtain various results such as the nonlinear evolution equation, its Lax pair, and their special solutions. In this way, the method is a convenient means of approaching the isomonodromic deformation equations.

Presents an elemental method, assuming only standard linear algebra and complex analysis Allows target equations such as Painlevé and Garnier systems to arise naturally through suitable Padé problems Provides a unique guide to continuous and discrete isomonodromic deformation equations based on a simple method

Inhalt
1Padé approximation and di erential equation.- 2Padé approximation for Pvi.- 3Padé approximation for q-Painlevé/Garnier equations.- 4Padé interpolation.- 5Padé interpolation on q-quadratic grid.- 6Multicomponent Generalizations.

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Herausgeber Springer Nature Singapore
    • Gewicht 166g
    • Untertitel SpringerBriefs in Mathematical Physics 42
    • Autor Yasuhiko Yamada , Hidehito Nagao
    • Titel Padé Methods for Painlevé Equations
    • Veröffentlichung 02.09.2021
    • ISBN 9811629978
    • Format Kartonierter Einband
    • EAN 9789811629976
    • Jahr 2021
    • Größe H235mm x B155mm x T6mm
    • Anzahl Seiten 100
    • Lesemotiv Verstehen
    • Auflage 1st edition 2021
    • GTIN 09789811629976

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470