Paradoxes of Set Theory

CHF 48.90
Auf Lager
SKU
QIOL6P2USLG
Stock 1 Verfügbar
Geliefert zwischen Fr., 06.02.2026 und Mo., 09.02.2026

Details

High Quality Content by WIKIPEDIA articles! Set theory as conceived by Georg Cantor assumes the existence of infinite sets. As this assumption cannot be proved from first principles it has been introduced into axiomatic set theory by the axiom of infinity, which asserts the existence of the set N of natural numbers. Every infinite set which can be enumerated by natural numbers is the same size (cardinality) as N, and is said to be countable. Examples of countably infinite sets are the natural numbers, the even numbers, the prime numbers, and also all the rational numbers, i.e., the fractions. These sets have in common the cardinal number N = aleph_0 (aleph-nought), a number greater than every natural number.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786130336820
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • Sprache Englisch
    • Größe H220mm x B150mm x T6mm
    • Jahr 2010
    • EAN 9786130336820
    • Format Kartonierter Einband
    • ISBN 978-613-0-33682-0
    • Titel Paradoxes of Set Theory
    • Untertitel Paradox, Intuition, Contradiction, Set Theory, Georg Cantor, Axiom of Infinity, Prime Number, Rational Number, Cardinal Number, Bijection
    • Gewicht 177g
    • Herausgeber Betascript Publishers
    • Anzahl Seiten 108
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38