Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Parallel Genetic Algorithms for Financial Pattern Discovery Using GPUs
Details
This Brief presents a study of SAX/GA, an algorithm to optimize market trading strategies, to understand how the sequential implementation of SAX/GA and genetic operators work to optimize possible solutions. This study is later used as the baseline for the development of parallel techniques capable of exploring the identified points of parallelism that simply focus on accelerating the heavy duty fitness function to a full GPU accelerated GA.
Describes in deep the efficient implementation of SAX/GA algorithm in GPU Presents an algorithm useful to optimize market trading strategies Useful for computational finance applications
Autorentext
João Baúto works at Fundacao Champalimaud in Lisbon, Portugal. He implements high performance computing tools applied to neuroscience and cancer research.
Rui Ferreira Neves is a professor at Instituto Superior Técnico, Portugal. His research activity comprises evolutionary computation and pattern matching applied to the financial markets, sensor networks, embedded systems and mixed signal integrated circuits.
Nuno Horta is the Head of the Integrated Circuits Group, Instituto de Telecomunicacoes, Portugal. His reseach interests are mainly in analog and mixed-sgnal IC design, analog IC design automation, soft computing and data science.
Klappentext
This Brief presents a study of SAX/GA, an algorithm to optimize market trading strategies, to understand how the sequential implementation of SAX/GA and genetic operators work to optimize possible solutions. This study is later used as the baseline for the development of parallel techniques capable of exploring the identified points of parallelism that simply focus on accelerating the heavy duty fitness function to a full GPU accelerated GA.
Inhalt
Introduction.- State-of-the-Art in Pattern Recognition Techniques.- SAX/GA CPU Approach.- GPU-accelerated SAX/GA.- Conclusions and Future Work in the Field.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319733289
- Genre Technology Encyclopedias
- Auflage 1st ed. 2018
- Lesemotiv Verstehen
- Anzahl Seiten 91
- Herausgeber Springer-Verlag GmbH
- Größe H235mm x B155mm
- Jahr 2018
- EAN 9783319733289
- Format Kartonierter Einband
- ISBN 978-3-319-73328-9
- Veröffentlichung 09.02.2018
- Titel Parallel Genetic Algorithms for Financial Pattern Discovery Using GPUs
- Autor João Baúto , Rui Neves , Nuno Horta
- Untertitel SpringerBriefs in Applied Sciences and Technology - SpringerBriefs in Computatio
- Gewicht 180g
- Sprache Englisch