Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Parameter Advising for Multiple Sequence Alignment
Details
Presents practical approaches to the pervasive question of how to choose parameter settings for sequence alignment
Provides links to proven software implementations that work well on real data
Introduces a general framework for parameter advising of broad utility in bioinformatics and beyond
Klappentext
This book develops a new approach called parameter advising for finding a parameter setting for a sequence aligner that yields a quality alignment of a given set of input sequences. In this framework, a parameter advisor is a procedure that automatically chooses a parameter setting for the input, and has two main ingredients: (a) the set of parameter choices considered by the advisor, and (b) an estimator of alignment accuracy used to rank alignments produced by the aligner. On coupling a parameter advisor with an aligner, once the advisor is trained in a learning phase, the user simply inputs sequences to align, and receives an output alignment from the aligner, where the advisor has automatically selected the parameter setting. The chapters first lay out the foundations of parameter advising, and then cover applications and extensions of advising. The content examines formulations of parameter advising and their computational complexity, develops methods for learning good accuracy estimators, presents approximation algorithms for finding good sets of parameter choices, and assesses software implementations of advising that perform well on real biological data. Also explored are applications of parameter advising to adaptive local realignment, where advising is performed on local regions of the sequences to automatically adapt to varying mutation rates, and ensemble alignment, where advising is applied to an ensemble of aligners to effectively yield a new aligner of higher quality than the individual aligners in the ensemble. The book concludes by offering future directions in advising research.
Inhalt
1 Introduction and Background.- 2 Alignment Accuracy Estimation.- 3 The Facet Estimator.- 4 Computational Complexity of Advising.- 5 Constructing Advisors.- 6 Parameter Advising for the Opal Aligner.- 7 Ensemble Mind Alignment.- 8 Adaptive Local Realignment.- 9 Core Column Prediction for Alignments.- 10 Future Directions.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319649177
- Herausgeber Springer International Publishing
- Anzahl Seiten 168
- Lesemotiv Verstehen
- Genre Software
- Auflage 1st edition 2017
- Sprache Englisch
- Gewicht 424g
- Untertitel Computational Biology 26
- Autor John Kececioglu , Dan Deblasio
- Größe H241mm x B160mm x T15mm
- Jahr 2018
- EAN 9783319649177
- Format Fester Einband
- ISBN 3319649175
- Veröffentlichung 29.01.2018
- Titel Parameter Advising for Multiple Sequence Alignment