Partial Differential Equations V

CHF 136.80
Auf Lager
SKU
MUUTUUKOFN3
Stock 1 Verfügbar
Geliefert zwischen Mi., 04.02.2026 und Do., 05.02.2026

Details

In this paper we shall discuss the construction of formal short-wave asymp totic solutions of problems of mathematical physics. The topic is very broad. It can somewhat conveniently be divided into three parts: 1. Finding the short-wave asymptotics of a rather narrow class of problems, which admit a solution in an explicit form, via formulas that represent this solution. 2. Finding formal asymptotic solutions of equations that describe wave processes by basing them on some ansatz or other. We explain what 2 means. Giving an ansatz is knowing how to give a formula for the desired asymptotic solution in the form of a series or some expression containing a series, where the analytic nature of the terms of these series is indicated up to functions and coefficients that are undetermined at the first stage of consideration. The second stage is to determine these functions and coefficients using a direct substitution of the ansatz in the equation, the boundary conditions and the initial conditions. Sometimes it is necessary to use different ansiitze in different domains, and in the overlapping parts of these domains the formal asymptotic solutions must be asymptotically equivalent (the method of matched asymptotic expansions). The basis for success in the search for formal asymptotic solutions is a suitable choice of ansiitze. The study of the asymptotics of explicit solutions of special model problems allows us to "surmise" what the correct ansiitze are for the general solution.

The authors survey an important topic in PDE which is highly relevant for applications in physics

Klappentext

The six articles in this EMS volume provide an overview of a number of contemporary techniques in the study of the asymptotic behavior of partial differential equations.These techniques include the Maslov canonical operator, semiclassical asymptotics of solutions and eigenfunctions, behavior of solutions near singular points of different kinds, matching of asymptotic expansions close to a boundary layer, and processes in inhomogeneous media. Asymptotic expansions are one of the most important areas in the theory of partial differential equations. Readers should find the wide variety of approaches of interest.


Inhalt
I. Equations with Rapidly Oscillating Solutions.- II. Asymptotic Expansion as t?3 ? of the Solutions of Exterior Boundary Value Problems for Hyperbolic Equations and Quasiclassical Approximations.- III. The Higher-Dimensional WKB Method or Ray Method. Its Analogues and Generalizations.- IV. Semiclassical Asymptotics of Eigenfunctions.- V. The Boundary Layer.- VI. The Averaging Method for Partial Differential Equations (Homogenization) and Its Applications.- Author Index.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783642635861
    • Übersetzer J. S. Joel, S. A. Wolf
    • Editor M. V. Fedoryuk
    • Schöpfer M.V. Fedoryuk, V.M. Babich, N.S. Bakhvalov, A.M. Il'in, V.F. Lazutkin, G. Panasenko, A.L. Shtaras, B.R. Vainberg
    • Beiträge von V.M. Babich, N.S. Bakhvalov, M.V. Fedoryuk, A.M. Il'in, V.F. Lazutkin, G. Panasenko, A.L. Shtaras, B.R. Vainberg
    • Sprache Englisch
    • Größe H235mm x B155mm x T15mm
    • Jahr 2012
    • EAN 9783642635861
    • Format Kartonierter Einband
    • ISBN 3642635865
    • Veröffentlichung 11.10.2012
    • Titel Partial Differential Equations V
    • Untertitel Asymptotic Methods for Partial Differential Equations
    • Gewicht 400g
    • Herausgeber Springer
    • Anzahl Seiten 260
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38