Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Partial Fractions in Complex Analysis
CHF 43.20
Auf Lager
SKU
R85TUPMCV2B
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025
Details
Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In complex analysis, a partial fraction expansion is a way of writing a meromorphic function f(z) as an infinite sum of rational functions and polynomials. When f(z) is a rational function, this reduces to the usual method of partial fractions. By using polynomial long division and the partial fraction technique from algebra, any rational function can be written as a sum of terms of the form 1 / (az + b)k + p(z), where a and b are complex, k is an integer, and p(z) is a polynomial . Just as polynomial factorization can be generalized to the Weierstrass factorization theorem, there is an analogy to partial fraction expansions for certain meromorphic functions. A proper rational function, i.e. one for which the degree of the denominator is greater than the degree of the numerator, has a partial fraction expansion with no polynomial terms. Similarly, a meromorphic function f(z) for which f(z) goes to 0 as z goes to infinity at least as quickly as 1/z , has an expansion with no polynomial terms.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131259463
- Editor Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow
- Genre Physik & Astronomie
- Größe H220mm x B220mm
- EAN 9786131259463
- Format Fachbuch
- Titel Partial Fractions in Complex Analysis
- Herausgeber Betascript Publishing
- Anzahl Seiten 96
Bewertungen
Schreiben Sie eine Bewertung