Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Partial Order on Classical and Quantum States
Details
In this work we extend the work done by Bob Coecke and Keye Martin in their paper "Partial Order on Classical States and Quantum States (2003)". We review basic notions involving elementary domain theory, the set of probability measures on a finite set {a1, a2, ..., an}, which we identify with the standard (n-1)-simplex ?n and Shannon Entropy. We consider partial orders on ?n, which have the Entropy Reversal Property (ERP) : elements lower in the order have higher (Shannon) entropy or equivalently less information . The ERP property is important because of its applications in quantum information theory. We define a new partial order on ?n, called Stochastic Order , using the well-known concept of majorization order and show that it has the ERP property and is also a continuous domain. In contrast, the bayesian order on ?n defined by Coecke and Martin has the ERP property but is not continuous.
Autorentext
Arka Prava Bandyopadhyay, originally a student of Ramkrishna Mission, Narendrapur has an MS in Mathematics from India. He came to USA in 2010 and finished another MS in Computer science in just one year from Louisiana State University. Currently he is doing PhD in Mathematics in Courant Institute of Mathematical Sciences in New York University.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783846533482
- Sprache Englisch
- Auflage Aufl.
- Größe H220mm x B150mm x T4mm
- Jahr 2011
- EAN 9783846533482
- Format Kartonierter Einband
- ISBN 3846533483
- Veröffentlichung 18.10.2011
- Titel Partial Order on Classical and Quantum States
- Autor Arka Prava Bandyopadhyay , Jimmie Lawson
- Untertitel Revised Bayesian Order, Majorization Order, Stochastic Order, characterization of upper sets and closedness in orders
- Gewicht 107g
- Herausgeber LAP LAMBERT Academic Publishing
- Anzahl Seiten 60
- Genre Mathematik