Pattern Formation in Viscous Flows

CHF 155.15
Auf Lager
SKU
2RQ657OEEHI
Stock 1 Verfügbar
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026

Details

It seems doubtful whether we can expect to understand fully the instability of fluid flow without obtaining a mathematical representa tion of the motion of a fluid in some particular case in which instability can actually be ob served, so that a detailed comparison can be made between the results of analysis and those of experiment. - G.l. Taylor (1923) Though the equations of fluid dynamics are quite complicated, there are configurations which allow simple flow patterns as stationary solutions (e.g. flows between parallel plates or between rotating cylinders). These flow patterns can be obtained only in certain parameter regimes. For parameter values not in these regimes they cannot be obtained, mainly for two different reasons: • The mathematical existence of the solutions is parameter dependent; or • the solutions exist mathematically, but they are not stable. For finding stable steady states, two steps are required: the steady states have to be found and their stability has to bedetermined.

Klappentext

The Taylor-Couette system is one of the most studied examples of fluid flow exhibiting the spontaneous formation of dynamical structures. In this book, the variety of time independent solutions with periodic spatial structure is numerically investigated by solution of the Navier-Stokes equations.


Inhalt
1 The Taylor Experiment.- 1.1 Modeling of the Experiment.- 1.2 Flows between Rotating Cylinders.- 1.3 Stability of Couette Flow.- 2 Details of a Numerical Method.- 2.1 Introduction.- 2.2 The Discretized System.- 2.3 Computation of Solutions.- 2.4 Computation of flow Parameters.- 2.5 Numerical Accuracy.- 3 Stationary Taylor Vortex Flows.- 3.1 Introduction.- 3.2 Computations with Fixed Period ? ? 2.- 3.3 Variation of Flows with Period ?.- 3.4 Interactions of Secondary Branches.- 3.5 Re = 2 Recr and the (n, pn) Double Points.- 3.6 Stability of the Stationary Vortices.- 4 Secondary Bifurcations on Convection Rolls.- 4.1 Introduction.- 4.2 The Rayleigh-Bénard Problem.- 4.3 Stationary Convection Rolls.- 4.4 The (2,4) Interaction in a Model Problem.- 4.5 The (2,6) Interaction in a Model Problem.- 4.6 Generalisations and Consequences.

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Anzahl Seiten 228
    • Herausgeber Birkhäuser Basel
    • Gewicht 402g
    • Untertitel The Taylor-Couette Problem and Rayleigh-Bnard Convection
    • Autor Rita Meyer-Spasche
    • Titel Pattern Formation in Viscous Flows
    • Veröffentlichung 14.10.2012
    • ISBN 3034897383
    • Format Kartonierter Einband
    • EAN 9783034897389
    • Jahr 2012
    • Größe H244mm x B170mm x T13mm
    • Lesemotiv Verstehen
    • Auflage 1999
    • GTIN 09783034897389

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38