Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Pendulum (mathematics)
Details
Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online.The mathematics of pendulums are in general quite complicated. Simplifying assumptions can be made, which in the case of a simple pendulum allows the equations of motion to be solved analytically for small-angle oscillations. Simple gravity pendulum Trigonometry of a simple gravity pendulum. A simple pendulum is an idealisation, working on the assumption that: The rod or cord on which the bob swings is massless, inextensible and always remains taut; Motion occurs in a 2-dimensional plane, i.e. the bob does not trace an ellipse. The motion does not lose energy to friction.
Klappentext
The mathematics of pendulums are in general quite complicated. Simplifying assumptions can be made, which in the case of a simple pendulum allows the equations of motion to be solved analytically for small-angle oscillations. Simple gravity pendulum Trigonometry of a simple gravity pendulum. A simple pendulum is an idealisation, working on the assumption that: . The rod or cord on which the bob swings is massless, inextensible and always remains taut; . Motion occurs in a 2-dimensional plane, i.e. the bob does not trace an ellipse. . The motion does not lose energy to friction.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130305208
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- Sprache Englisch
- Größe H220mm x B220mm
- Jahr 2009
- EAN 9786130305208
- Format Kartonierter Einband
- ISBN 978-613-0-30520-8
- Titel Pendulum (mathematics)
- Untertitel Pendulum, Differential Equation, Work Physics, Kinetic Energy, Gravitational Potential, Constant of Motion, Taylor Series, Harmonic Oscillator
- Herausgeber VDM Verlag Dr. Müller e.K.
- Anzahl Seiten 96
- Genre Mathematik