Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Phishing Classifier For Websites
Details
The book involves the development of a web-based application that integrates multiple machine learning models-including XGBoost, Logistic Regression, and Gaussian Naive Bayes-to classify URLs as either phishing or legitimate. The models were trained using real world datasets consisting of over 5,000 phishing URLs and 5,000 legitimate ones, collected from trusted sources like Phish Tank and the University of New Brunswick. Key steps in the system include data preprocessing, feature selection, and feature extraction, focusing on elements like URL structure, domain age, and embedded scripts. The system leverages exploratory data analysis to visualize data insights and employs Principal Component Analysis (PCA) to optimize the model by reducing redundant data.
Autorentext
The classifier is designed to integrate seamlessly with a user interface, providing instant feedback on website legitimacy, thereby helping users avoid fraudulent websites and protect their personal data. The system has been evaluated using industry-standard metrics such as accuracy, precision, recall,and F1-score, and has shown promising results.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786208444563
- Anzahl Seiten 60
- Genre Technology
- Sprache Englisch
- Herausgeber LAP LAMBERT Academic Publishing
- Untertitel Protecting Users from Phishing in the Modern Website Era
- Größe H220mm x B150mm
- Jahr 2025
- EAN 9786208444563
- Format Kartonierter Einband
- ISBN 978-620-8-44456-3
- Titel Phishing Classifier For Websites
- Autor Dhairyashil More , Abhishek Ingalkar , Pratap Kharabe