Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Pinwheel Tiling
CHF 49.15
Auf Lager
SKU
8PISFBJB7ID
Geliefert zwischen Do., 29.01.2026 und Fr., 30.01.2026
Details
Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. The pinwheel tiling is an aperiodic tiling proposed by John Conway and Charles Radin. It is constructed with a right triangle which appears in infinitely many orientations. This is its most remarkable feature, which was expressly sought by Radin. The first example with this property was proposed by Filipo Cesi, who used four tiles (two squares with incommensurate sides, a rectangle, and a triangle). Conway proposed a solution using just one triangular prototile with dimensions 1,2, sqrt 5. If tile flipping is not allowed there should be right-handed and left-handed versions of the shape. The tiles do not match only edge-to-edge, but vertex-to-edge configurations occur. The full set of matching rules is rather complicated, so the standard method to construct the tiling relies on substitution.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131288111
- Editor Lambert M. Surhone, Mariam T. Tennoe, Susan F. Henssonow
- Größe H220mm x B220mm
- EAN 9786131288111
- Format Fachbuch
- Titel Pinwheel Tiling
- Herausgeber Betascript Publishing
- Anzahl Seiten 108
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung