Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Pivotal Quantity
CHF 49.05
Auf Lager
SKU
85668H5A02P
Geliefert zwischen Fr., 30.01.2026 und Mo., 02.02.2026
Details
High Quality Content by WIKIPEDIA articles! In statistics, a pivotal quantity or pivot is a function of observations and unobservable parameters whose probability distribution does not depend on unknown parameters. Note that a pivot quantity need not be a statistic the function and its value can depend on parameters of the model, but its distribution must not. If it is a statistic, then it is known as an ancillary statistic. More formally, given an independent and identically distributed sample X = (X1,X2,ldots,X_n) from a distribution with parameter , a function g is a pivotal quantity if the distribution of g(X, ) is independent of . Pivotal quantities are commonly used for normalization to allow data from different data sets to be compared. It is relatively easy to construct pivots for location and scale parameters: for the former we form differences so that location cancels, for the latter ratios so that scale cancels.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130334734
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- Sprache Englisch
- Größe H220mm x B150mm x T7mm
- Jahr 2010
- EAN 9786130334734
- Format Fachbuch
- ISBN 978-613-0-33473-4
- Titel Pivotal Quantity
- Untertitel Statistics, Probability Distribution, Parameter, Statistic, Ancillary Statistic, Independent and Identically-Distributed Random Variables, Normalization, Test Statistic
- Gewicht 183g
- Herausgeber Betascript Publishers
- Anzahl Seiten 112
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung