Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Polygon Semi regular Low Density Parity Check Codes
Details
I proposed a new algorithm for the allocation of g- values to the binary vectors. An infinite family of simple graphs in generated by placing copies of polygons in parallel such that degree of each vertex is three. We call them polygon graphs. Since polygon graphs are bipartite therefore they can be used as Tanner graphs to generate low density parity check codes. An incidence structure defined on these polygon graphs in named as polygon semi design. Rows of incidence matrix are reduced by deleting rows from the bottom one by one. These matrices serve as parity check matrices to define low density parity check codes for various dimensions. Size of the stopping sets in the associated Tanner graphs of LDPC codes determine the performance of codes over binary erasure channel. The generated polygon semi regular LDPC codes are simulated and their performance is presented by BER. plots. There exists polygon semi regular LDPC codes e.g. (25,4,17), (49,6,19) etc. The LDPC codes of girth 6 presented by Vera Pless has parameters (25,4,10), (49,6,14). This shows a significant improvement in terms of minimum distance.
Autorentext
I received PhD from mathematicis department,University of the Punjab Pakistan. I served as a teacher at University of Management and Technology Lahore Pakistan and Hafer Al-Batin Community College (King Fahad University of Petrolume and Minirals) Saudi Arabia.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783639264098
- Sprache Englisch
- Größe H220mm x B150mm x T6mm
- Jahr 2013
- EAN 9783639264098
- Format Kartonierter Einband (Kt)
- ISBN 978-3-639-26409-8
- Titel Polygon Semi regular Low Density Parity Check Codes
- Autor Khalil Shah
- Untertitel Graphs Designs and Codes
- Gewicht 165g
- Herausgeber VDM Verlag Dr. Müller e.K.
- Anzahl Seiten 100
- Genre Mathematik