Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Polynomial Formal Verification of Approximate Functions
Details
During the development of digital circuits, their functional correctness has to be ensured, for which formal verification methods have been established. However, the verification process using formal methods can have an exponential time or space complexity, causing the verification to fail. While exponential in general, recently it has been proven that the verification complexity of several circuits is polynomially bounded. Martha Schnieber proves the polynomial verifiability of several approximate circuits, which are beneficial in error-tolerant applications, where the circuit approximates the exact function in some cases, while having a lower delay or being more area-efficient. Here, upper bounds for the BDD size and the time and space complexity are provided for the verification of general approximate functions and several state-of-the-art approximate adders.
Autorentext
About the author Martha Schnieber is working as a research assistant in the Group of Computer Architecture at the University of Bremen.
Inhalt
Introduction.- Preliminaries.- RelatedWork.- PolynomialVerification.- Experiments.- Conclusion.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783658418878
- Lesemotiv Verstehen
- Genre Electrical Engineering
- Auflage 1st edition 2023
- Sprache Englisch
- Anzahl Seiten 92
- Herausgeber Springer Fachmedien Wiesbaden
- Größe H210mm x B148mm x T6mm
- Jahr 2023
- EAN 9783658418878
- Format Kartonierter Einband
- ISBN 3658418877
- Veröffentlichung 23.07.2023
- Titel Polynomial Formal Verification of Approximate Functions
- Autor Martha Schnieber
- Untertitel BestMasters
- Gewicht 132g