Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Polynomial- Time Algorithm for Volume of Convex Bodies
CHF 56.30
Auf Lager
SKU
927B6CTM2OQ
Geliefert zwischen Mi., 04.02.2026 und Do., 05.02.2026
Details
High Quality Content by WIKIPEDIA articles! High Quality Content by WIKIPEDIA articles! The paper is a joint work by Martin Dyer, Alan M. Frieze and Ravindran Kannan. The main result of the paper is a randomized algorithm for finding an approximation to the volume of a convex body K in n-dimensional Euclidean space by assume the existence of a membership oracle. The algorithm takes time bounded by a polynomial in n, the dimension of K and 1 / . The algorithm is a sophisticated usage of the so-called Markov chain Monte Carlo (MCMC) method. The basic scheme of the algorithm is a nearly uniform sampling from within K by placing a grid consisting n-dimensional cubes and doing a random walk over these cubes. By using the theory of rapidly mixing Markov chains, they show that it takes a polynomial time for the random walk to settle down to being a nearly uniform distribution.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786131171680
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- EAN 9786131171680
- Format Fachbuch
- Titel Polynomial- Time Algorithm for Volume of Convex Bodies
- Herausgeber Betascript Publishing
- Anzahl Seiten 140
- Genre Mathematik
Bewertungen
Schreiben Sie eine Bewertung