Polynomial- Time Algorithm for Volume of Convex Bodies

CHF 56.30
Auf Lager
SKU
927B6CTM2OQ
Stock 1 Verfügbar
Geliefert zwischen Mi., 04.02.2026 und Do., 05.02.2026

Details

High Quality Content by WIKIPEDIA articles! High Quality Content by WIKIPEDIA articles! The paper is a joint work by Martin Dyer, Alan M. Frieze and Ravindran Kannan. The main result of the paper is a randomized algorithm for finding an approximation to the volume of a convex body K in n-dimensional Euclidean space by assume the existence of a membership oracle. The algorithm takes time bounded by a polynomial in n, the dimension of K and 1 / . The algorithm is a sophisticated usage of the so-called Markov chain Monte Carlo (MCMC) method. The basic scheme of the algorithm is a nearly uniform sampling from within K by placing a grid consisting n-dimensional cubes and doing a random walk over these cubes. By using the theory of rapidly mixing Markov chains, they show that it takes a polynomial time for the random walk to settle down to being a nearly uniform distribution.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786131171680
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • EAN 9786131171680
    • Format Fachbuch
    • Titel Polynomial- Time Algorithm for Volume of Convex Bodies
    • Herausgeber Betascript Publishing
    • Anzahl Seiten 140
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38