Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Population-Based Optimization on Riemannian Manifolds
Details
Manifold optimization is an emerging field of contemporary optimization that constructs efficient and robust algorithms by exploiting the specific geometrical structure of the search space. In our case the search space takes the form of a manifold.
Manifold optimization methods mainly focus on adapting existing optimization methods from the usual easy-to-deal-with Euclidean search spaces to manifolds whose local geometry can be defined e.g. by a Riemannian structure. In this way the form of the adapted algorithms can stay unchanged. However, to accommodate the adaptation process, assumptions on the search space manifold often have to be made. In addition, the computations and estimations are confined by the local geometry.
This book presents a framework for population-based optimization on Riemannian manifolds that overcomes both the constraints of locality and additional assumptions. Multi-modal, black-box manifold optimization problems on Riemannian manifolds can be tackled using zero-order stochastic optimization methods from a geometrical perspective, utilizing both the statistical geometry of the decision space and Riemannian geometry of the search space.
This monograph presents in a self-contained manner both theoretical and empirical aspects of stochastic population-based optimization on abstract Riemannian manifolds.
Presents recent research on Population-based Optimization on Riemannian manifolds Addresses the locality and implicit assumptions of manifold optimization Presents a novel population-based optimization algorithm on Riemannian manifolds
Inhalt
Introduction.- Riemannian Geometry: A Brief Overview.- Elements of Information Geometry.- Probability Densities on Manifolds.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783031042959
- Genre Technology Encyclopedias
- Auflage 1st edition 2022
- Lesemotiv Verstehen
- Anzahl Seiten 180
- Herausgeber Springer International Publishing
- Größe H235mm x B155mm x T11mm
- Jahr 2023
- EAN 9783031042959
- Format Kartonierter Einband
- ISBN 3031042956
- Veröffentlichung 19.05.2023
- Titel Population-Based Optimization on Riemannian Manifolds
- Autor Peter Tino , Robert Simon Fong
- Untertitel Studies in Computational Intelligence 1046
- Gewicht 283g
- Sprache Englisch