Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Portfolio Optimization Using Fundamental Indicators Based on Multi-Objective EA
Details
This work presents a new approach to portfolio composition in the stock market. It incorporates a fundamental approach using financial ratios and technical indicators with a Multi-Objective Evolutionary Algorithms to choose the portfolio composition with two objectives the return and the risk. Two different chromosomes are used for representing different investment models with real constraints equivalents to the ones faced by managers of mutual funds, hedge funds, and pension funds. To validate the present solution two case studies are presented for the SP&500 for the period June 2010 until end of 2012. The simulations demonstrates that stock selection based on financial ratios is a combination that can be used to choose the best companies in operational terms, obtaining returns above the market average with low variances in their returns. In this case the optimizer found stocks with high return on investment in a conjunction with high rate of growth of the net income and a high profit margin. To obtain stocks with high valuation potential it is necessary to choose companies with a lower or average market capitalization, low PER, high rates of revenue growth and high operating leverage
Proposes a multi-objective GA to efficiently manage a stock portfolio Presents results of Evolutionary Computation applied to Computational Finance Includes supplementary material: sn.pub/extras
Inhalt
Introduction.- Literature Review.- System Architecture.- Multi-Objective optimization.- Simulations in single and multi-objective optimization.- Outlook.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319293905
- Genre Technology Encyclopedias
- Auflage 1st edition 2016
- Lesemotiv Verstehen
- Anzahl Seiten 116
- Herausgeber Springer International Publishing
- Größe H235mm x B155mm x T7mm
- Jahr 2016
- EAN 9783319293905
- Format Kartonierter Einband
- ISBN 3319293907
- Veröffentlichung 19.02.2016
- Titel Portfolio Optimization Using Fundamental Indicators Based on Multi-Objective EA
- Autor Antonio Daniel Silva , Nuno Horta , Rui Ferreira Neves
- Untertitel SpringerBriefs in Applied Sciences and Technology - SpringerBriefs in Computatio
- Gewicht 189g
- Sprache Englisch