Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Positive Polynomials
Details
Positivity is one of the most basic mathematical concepts. In many areas of mathematics (like analysis, real algebraic geometry, functional analysis, etc.) it shows up as positivity of a polynomial on a certain subset of R^n which itself is often given by polynomial inequalities. The main objective of the book is to give useful characterizations of such polynomials. It takes as starting point Hilbert's 17th Problem from 1900 and explains how E. Artin's solution of that problem eventually led to the development of real algebra towards the end of the 20th century. Beyond basic knowledge in algebra, only valuation theory as explained in the appendix is needed. Thus the monograph can also serve as the basis for a 2-semester course in real algebra.
Includes supplementary material: sn.pub/extras
Klappentext
Positivity is one of the most basic mathematical concepts, involved in many areas of mathematics (analysis, real algebraic geometry, functional analysis, etc.). The main objective of the book is to give useful characterizations of polynomials. Beyond basic knowledge in algebra, only valuation theory as explained in the appendix is needed.
Inhalt
- Real Fields.- 2. Semialgebraic Sets.- 3. Quadratic Forms over Real Fields.- 4. Real Rings.- 5. Archimedean Rings.- 6. Positive Polynomials on Semialgebraic Sets.- 7. Sums of 2mth Powers.- 8. Bounds.- Appendix: Valued Fields.- A.1 Valuations.- A.2 Algebraic Extensions.- A.3 Henselian Fields.- A.4 Complete Fields.- A.5 Dependence and Composition of Valuations.- A.6 Transcendental Extensions.- A.7 Exercises.- A.8 Bibliographical Comments.- References.- Glossary of Notations.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783540412151
- Sprache Englisch
- Auflage 2001. 2001
- Größe H244mm x B23mm x T157mm
- Jahr 2001
- EAN 9783540412151
- Format Fester Einband
- ISBN 978-3-540-41215-1
- Titel Positive Polynomials
- Autor Alexander Prestel , Charles Delzell
- Untertitel From Hilbert's 17th Problem to Real Algebra
- Gewicht 584g
- Herausgeber Springer-Verlag GmbH
- Anzahl Seiten 268
- Lesemotiv Verstehen
- Genre Mathematik