Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Power Series
CHF 49.55
Auf Lager
SKU
PKKKUMCL67I
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025
Details
High Quality Content by WIKIPEDIA articles! Every power series with a positive radius of convergence is analytic on the interior of its region of convergence. All holomorphic functions are complex-analytic. Sums and products of analytic functions are analytic, as are quotients as long as the denominator is non-zero. If a power series with radius of convergence r is given, one can consider analytic continuations of the series, i.e. analytic functions f which are defined on larger sets than { x : x - c r } and agree with the given power series on this set. The number r is maximal in the following sense: there always exists a complex number x with x - c = r such that no analytic continuation of the series can be defined at x.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130339043
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- Sprache Englisch
- Genre Physik & Astronomie
- Größe H218mm x B149mm x T17mm
- Jahr 2010
- EAN 9786130339043
- Format Fachbuch
- ISBN 978-613-0-33904-3
- Titel Power Series
- Untertitel Mathematics, Series (mathematics), Taylor Series, Combinatorics, Generating Function, Decimal, Real Number, Number Theory, Geometric Series, Radius of Convergence
- Gewicht 203g
- Herausgeber Betascript Publishers
- Anzahl Seiten 124
Bewertungen
Schreiben Sie eine Bewertung