Predicting Methyl Violet Adsorption by Modified Palm Fiber Using ANN

CHF 47.60
Auf Lager
SKU
80MU6PUE028
Stock 1 Verfügbar
Shipping Kostenloser Versand ab CHF 50
Geliefert zwischen Do., 16.10.2025 und Fr., 17.10.2025

Details

In this book, bio-absorbent palm fiber was applied for removal of cationic violet methyl dye from water solution. For this purpose, a solid phase extraction method combined with the artificial neural network (ANN) was used for preconcentration and determination of removal level of violet methyl dye. This method is influenced by factors such as pH, the contact time, the rotation speed, and the adsorbent dosage. In order to find a suitable model of parameters and calculate the desired output, two radial basis function (RBF) and multi-layer perceptron (MLP) non-recursive functions, which are among widely used artificial neural networks, were used for training the input data. The performance of this method is tested by common statistical parameters including RMSE, MAE, and CE. The results show that the artificial neural network algorithm has a good performance in simulating and predicting the removal of violet methyl dye.

Autorentext

Rashin Andayesh siempre ha soñado con ser químico, pero no le dio una sensación de serenidad y tranquilidad cuando tuvo preocupaciones ambientales. Rashin logró su objetivo y tiene una maestría en Química Analítica y ahora es estudiante de doctorado en la Universidad de Australia del Sur para cumplir su ambición sobre la Ciencia Ambiental.

Cart 30 Tage Rückgaberecht
Cart Garantie

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Herausgeber LAP LAMBERT Academic Publishing
    • Gewicht 96g
    • Untertitel Using Novel Artificial Neural Network Methods in Adsorbing Aqueous Methyl Violet Dye by Modified Palm Fiber
    • Autor Rashin Andayesh , Maryam Abrishamkar
    • Titel Predicting Methyl Violet Adsorption by Modified Palm Fiber Using ANN
    • Veröffentlichung 27.05.2020
    • ISBN 6202565373
    • Format Kartonierter Einband
    • EAN 9786202565370
    • Jahr 2020
    • Größe H220mm x B150mm x T4mm
    • Anzahl Seiten 52
    • GTIN 09786202565370

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.