Predicting the Future

CHF 143.95
Auf Lager
SKU
VURS5A1R7MI
Stock 1 Verfügbar
Geliefert zwischen Di., 27.01.2026 und Mi., 28.01.2026

Details

This book discusses model building and evaluation across disciplines, by means of an exact path integral for transferring information from observations to a model of the observed system. Offers examples in geosciences, nonlinear electrical circuits and more.

Through the development of an exact path integral for use in transferring information from observations to a model of the observed system, the author provides a general framework for the discussion of model building and evaluation across disciplines. Through many illustrative examples drawn from models in neuroscience, geosciences, and nonlinear electrical circuits, the concepts are exemplified in detail. Practical numerical methods for approximate evaluations of the path integral are explored, and their use in designing experiments and determining a model's consistency with observations is explored.

Formulates long standing state and parameter estimation problems Explores numerous examples drawn from a broad interdisciplinary collection of scholarly subjects Proposes a universal approach with practical examples to bolster significant advances in solving the problems of model determination and parameter estimation Includes supplementary material: sn.pub/extras

Autorentext

Henry Abarbanel is a new member of the Springer Complexity Board. He is a Professor of Physics at UCSD in La Jolla, CA. http: //neurograd.ucsd.edu/faculty/detail.php?id=1


Klappentext

Predicting the Future: Completing Models of Observed Complex Systems provides a general framework for the discussion of model building and validation across a broad spectrum of disciplines. This is accomplished through the development of an exact path integral for use in transferring information from observations to a model of the observed system. Through many illustrative examples drawn from models in neuroscience, fluid dynamics, geosciences, and nonlinear electrical circuits, the concepts are exemplified in detail. Practical numerical methods for approximate evaluations of the path integral are explored, and their use in designing experiments and determining a model's consistency with observations is investigated.

Using highly instructive examples, the problems of data assimilation and the means to treat them are clearly illustrated. This book will be useful for students and practitioners of physics, neuroscience, regulatory networks, meteorology and climate science, network dynamics, fluid dynamics, and other systematic investigations of complex systems.


Inhalt
Preface.- 1 An Overview; The Challenge of Complex Systems.- 2 Examples as a Guide to the Issues.- 3 General Formulation of Statistical Data Assimilation.- 4 Evaluating the Path Integral.- 5 Twin Experiments.- 6 Analysis of Experimental Data.

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Anzahl Seiten 256
    • Herausgeber Springer New York
    • Gewicht 553g
    • Untertitel Completing Models of Observed Complex Systems
    • Autor Henry Abarbanel
    • Titel Predicting the Future
    • Veröffentlichung 11.06.2013
    • ISBN 1461472172
    • Format Fester Einband
    • EAN 9781461472179
    • Jahr 2013
    • Größe H241mm x B160mm x T18mm
    • Lesemotiv Verstehen
    • Auflage 2013
    • GTIN 09781461472179

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38