Predicting the Lineage Choice of Hematopoietic Stem Cells

CHF 79.15
Auf Lager
SKU
42J398T0NDT
Stock 1 Verfügbar
Geliefert zwischen Fr., 07.11.2025 und Mo., 10.11.2025

Details

Manuel Kroiss examines the differentiation of hematopoietic stem cells using machine learning methods. This work is based on experiments focusing on the lineage choice of CMPs, the progenitors of HSCs, which either become MEP or GMP cells. The author presents a novel approach to distinguish MEP from GMP cells using machine learning on morphology features extracted from bright field images. He tests the performance of different models and focuses on Recurrent Neural Networks with the latest advances from the field of deep learning. Two different improvements to recurrent networks were tested: Long Short Term Memory (LSTM) cells that are able to remember information over long periods of time, and dropout regularization to prevent overfitting. With his method, Manuel Kroiss considerably outperforms standard machine learning methods without time information like Random Forests and Support Vector Machines.

Publication in the Field of Organic Chemistry

Autorentext
After finishing his MSc in Bioinformatics, Manuel Kroiss moved to London to work for a computer science company. In his work, the author is focusing on algorithmic problem solving while still remaining interested in applied machine learning.

Inhalt
Machine Learning Deep Learning.- Training Neural Networks.- Recurrent Neural Networks.- Stem Cell Classification Using Microscopy Images.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783658128784
    • Lesemotiv Verstehen
    • Genre Chemistry
    • Auflage 1st edition 2016
    • Anzahl Seiten 84
    • Herausgeber Springer Fachmedien Wiesbaden
    • Größe H210mm x B148mm x T6mm
    • Jahr 2016
    • EAN 9783658128784
    • Format Kartonierter Einband
    • ISBN 365812878X
    • Veröffentlichung 20.05.2016
    • Titel Predicting the Lineage Choice of Hematopoietic Stem Cells
    • Autor Manuel Kroiss
    • Untertitel A Novel Approach Using Deep Neural Networks
    • Gewicht 122g
    • Sprache Englisch

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470