Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Predicting the Performance of Cross-Country Skiers Using Machine Learn
Details
The purpose of this thesis is to develop new regular and feature selection-based models for predicting the racing times of cross-country skiers by using machine learning and feature selection methods. Particularly, six popular machine learning methods including Optimized-General Regression Neural Network (OPGRNN), General Regression Neural Network (GRNN), Support Vector Machine (SVM), Multilayer Perceptron (MLP), Radial Basis Function Neural Network (RBFNN), and Single Decision Tree (SDT) have been used, whereas Relief-F has been employed as the feature selector. Several models have been developed to predict the racing time of cross-country skiers using physiological data along with a rich set of survey-based data. By performing 10-fold cross-validation, the prediction errors of the models have been calculated using root mean square error (RMSE). The results emphasize that OPGRNN-based prediction models show superior performance and can be categorized as a feasible tool to predict the racing time of cross-country skiers. Furthermore, significant advantages such as the non-exercise-based usage and the applicability to a broader range of cross-country skiers make the prediction mode.
Autorentext
Shahaboddin DANESHVAR was born in Tabr z-Iran, in 1982 .he is interested in computer science.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786204729343
- Herausgeber LAP LAMBERT Academic Publishing
- Anzahl Seiten 304
- Genre Software
- Sprache Englisch
- Gewicht 471g
- Untertitel DE
- Autor Shahaboddin Daneshvar
- Größe H220mm x B150mm x T19mm
- Jahr 2022
- EAN 9786204729343
- Format Kartonierter Einband
- ISBN 6204729349
- Veröffentlichung 01.08.2022
- Titel Predicting the Performance of Cross-Country Skiers Using Machine Learn