Predicting Transcription Factor Complexes

CHF 120.75
Auf Lager
SKU
CHLPKE8T3CH
Stock 1 Verfügbar
Geliefert zwischen Fr., 30.01.2026 und Mo., 02.02.2026

Details

In his master thesis Thorsten Will proposes the substantial information content of protein complexes involving transcription factors in the context of gene regulatory networks, designs the first computational approaches to predict such complexes as well as their regulatory function and verifies the practicability using data of the well-studied yeast S.cereviseae. The novel insights offer extensive capabilities towards a better understanding of the combinatorial control driving transcriptional regulation.

Master thesis in natural sciences Includes supplementary material: sn.pub/extras

Autorentext
Currently, the author is pursuing his Ph.D. at the Center for Bioinformatics in Saarbrücken, Germany.

Klappentext

In his master thesis Thorsten Will proposes the substantial information content of protein complexes involving transcription factors in the context of gene regulatory networks, designs the first computational approaches to predict such complexes as well as their regulatory function and verifies the practicability using data of the well-studied yeast S.cereviseae. The novel insights offer extensive capabilities towards a better understanding of the combinatorial control driving transcriptional regulation.

Contents

  • Protein Complex Prediction
  • Protein-Protein Interaction Networks
  • Domain-Domain Interaction Networks
  • Combinatorial Algorithms
  • Algorithm Engineering Target Groups
  • Computational biologists and biologists working with gene regulatory networks
  • Computer scientists interested in biological issues The Author

Currently, the author is pursuing his Ph.D. at the Center for Bioinformatics in Saarbrücken, Germany.

Inhalt
Protein Complex Prediction.- Protein-Protein Interaction Networks.- Domain-Domain Interaction Networks.- Combinatorial Algorithms.- Algorithm Engineering.

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Anzahl Seiten 164
    • Herausgeber Springer Fachmedien Wiesbaden
    • Gewicht 221g
    • Untertitel A Novel Approach to Data Integration in Systems Biology
    • Autor Thorsten Will
    • Titel Predicting Transcription Factor Complexes
    • Veröffentlichung 18.12.2014
    • ISBN 3658082682
    • Format Kartonierter Einband
    • EAN 9783658082680
    • Jahr 2014
    • Größe H210mm x B148mm x T10mm
    • Lesemotiv Verstehen
    • Auflage 2015
    • GTIN 09783658082680

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38