Prediction of Properties of Low and High Molecular Weight Compounds

CHF 78.35
Auf Lager
SKU
KRL01K1CUTB
Stock 1 Verfügbar
Geliefert zwischen Di., 27.01.2026 und Mi., 28.01.2026

Details

This work describes and discusses an innovative approach for the prediction of physical, chemical and biological properties of compounds, ranging from small molecules to large polymers. It is based on the direct and adaptive treatment of molecular structure by means of a Recursive Neural Network (RNN) to derive Quantitative Structure-Property/Activity Relationships (QSPR/QSARs). Chemical compounds are represented through appropriate graphical tools that bypass the need for numerical descriptors. The capabilities of this methodology are investigated by applying it to different predictive problems: the melting point of ionic liquids, the glass transition temperature of polymers and the toxicity of organic molecules. The results show that the graphical molecular representation was able to effectively model each case, providing accurate predictions using practically no background knowledge. The proposed structure-based RNN approach, it is argued, can provide a simple and general prediction method with great potential in molecular design, toxicology and evaluation of other complex properties.

Autorentext

Carlo G. Bertinetto is a researcher at the Department of Forest Product Technologies of the Aalto University of Helsinki, Finland.He works mainly in the field of chemometrics, applying different mathematical techniques to the study of wood chemistry and to the prediction of properties of chemical compounds from their molecular structure.

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Anzahl Seiten 192
    • Herausgeber LAP LAMBERT Academic Publishing
    • Gewicht 304g
    • Untertitel A Structure-Based QSAR/QSPR Approach Using Recursive Neural Networks
    • Autor Carlo Giuseppe Bertinetto
    • Titel Prediction of Properties of Low and High Molecular Weight Compounds
    • Veröffentlichung 24.11.2012
    • ISBN 3659271098
    • Format Kartonierter Einband
    • EAN 9783659271090
    • Jahr 2012
    • Größe H220mm x B150mm x T12mm
    • GTIN 09783659271090

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38