Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Proceedings of ELM-2016
Details
This book contains some selected papers from the International Conference on Extreme Learning Machine 2016, which was held in Singapore, December13-15, 2016. This conference will provide a forum for academics, researchers and engineers to share and exchange R&D experience on both theoretical studies and practical applications of the ELM technique and brain learning. Extreme Learning Machines (ELM) aims to break the barriers between the conventional artificial learning techniques and biological learning mechanism. ELM represents a suite of (machine or possibly biological) learning techniques in which hidden neurons need not be tuned. ELM learning theories show that very effective learning algorithms can be derived based on randomly generated hidden neurons (with almost any nonlinear piecewise activation functions), independent of training data and application environments. Increasingly, evidence from neurosciencesuggests that similar principles apply in biological learning systems. ELM theories and algorithms argue that random hidden neurons capture an essential aspect of biological learning mechanisms as well as the intuitive sense that the efficiency of biological learning need not rely on computing power of neurons. ELM theories thus hint at possible reasons why the brain is more intelligent and effective than current computers. ELM offers significant advantages over conventional neural network learning algorithms such as fast learning speed, ease of implementation, and minimal need for human intervention. ELM also shows potential as a viable alternative technique for largescale computing and artificial intelligence. This book covers theories, algorithms ad applications of ELM. It gives readers a glance of the most recent advances of ELM.
Recent research on Extreme Learning Machine Selected papers from the International Conference on Extreme Learning Machine 2016, which was held in Singapore, December 13-15, 2016 Presents Theory, Algorithms and Applications
Inhalt
From the Content: Earthen Archaeological Site Monitoring Data Analysis Using Kernel-based ELM and Non-uniform Sampling TFR.- A Multi-Valued Neuron ELM with Complex-Valued Inputs for System Identification using FRA.- Quaternion Extreme Learning Machine.
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319574202
- Genre Technology Encyclopedias
- Auflage 1st edition 2018
- Editor Jiuwen Cao, Erik Cambria, Chi Man Vong, Yoan Miche, Amaury Lendasse
- Lesemotiv Verstehen
- Anzahl Seiten 300
- Herausgeber Springer International Publishing
- Größe H241mm x B160mm x T22mm
- Jahr 2017
- EAN 9783319574202
- Format Fester Einband
- ISBN 3319574205
- Veröffentlichung 26.05.2017
- Titel Proceedings of ELM-2016
- Untertitel Proceedings in Adaptation, Learning and Optimization 9
- Gewicht 617g
- Sprache Englisch