Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Projective Unitary Group
Details
Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In mathematics, the projective unitary group PU(n) is the quotient of the unitary group U(n) by the right multiplication of its center, U(1), embedded as scalars. Abstractly, it is the isometry group of complex projective space, just as the projective orthogonal group is the isometry group of real projective space. In terms of matrices, elements of U(n) are complex ntimes n unitary matrices, and elements of the center are diagonal matrices equal to ei multiplied by the identity matrix. Thus elements of PU(n) correspond to equivalence classes of unitary matrices under multiplication by a constant phase .
Klappentext
High Quality Content by WIKIPEDIA articles! In mathematics, the projective unitary group PU(n) is the quotient of the unitary group U(n) by the right multiplication of its center, U(1), embedded as scalars. Abstractly, it is the isometry group of complex projective space, just as the projective orthogonal group is the isometry group of real projective space. In terms of matrices, elements of U(n) are complex ntimes n unitary matrices, and elements of the center are diagonal matrices equal to ei multiplied by the identity matrix. Thus elements of PU(n) correspond to equivalence classes of unitary matrices under multiplication by a constant phase .
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130315870
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- Sprache Englisch
- Größe H220mm x B220mm
- Jahr 2009
- EAN 9786130315870
- Format Kartonierter Einband
- ISBN 978-613-0-31587-0
- Titel Projective Unitary Group
- Untertitel Unitary Group, Special Unitary Group, Unitary Operator, Orthogonal Group, Quotient Group, Center
- Herausgeber Betascript Publishers
- Anzahl Seiten 76
- Genre Mathematik