PROPERTIES OF BÖRÖCZKY'S CONSTRUCTION

CHF 35.85
Auf Lager
SKU
51A62I12FAJ
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

Of a special interest are tilings in hyperbolic n-space . It is natural to extend the study of tiling problems to the hyperbolic plane as well as hyperbolic spaces of higher dimension. In this work we consider Karoly Böröczky tilings in hyperbolic space in arbitrary dimension, study some properties and some useful consequences of this Böröczky's construction. In the given work it will be shown, that Böröczky tiling has one more remarkable property using them it is simple to make examples of not face-to-face tilings of the hyperbolic n-dimensional space composed of congruent (equal), convex and compact polyhedral tiles. Additionally, these tilings also cannot be transformed in isohedral tilings using polytopes permutation as well. The obtained tilings of n- dimensional hyperbolic space are important as well, due to the fact that the examples of isohedral tilings of hyperbolic n-dimensional space by compact polyhedral tiles are not yet constructed. The proposed construction could be considered as well as constructive demonstration related to the theorem of existence of not face-to-face tilings of hyperbolic n - dimensional space by equal, convex and compact polytopes.

Autorentext

Professor Associado de Matemática, Academia de Estudos Económicos da Moldávia. O seu principal domínio de investigação é a geometria discreta e a geometria hiperbólica, sendo autor de mais de 80 publicações. As suas publicações abrangem temas como: Tilings dos espaços de curvatura negativa constante, colectores hiperbólicos, comportamento de geodésicas em dois colectores hiperbólicos.

Weitere Informationen

  • Allgemeine Informationen
    • Sprache Englisch
    • Herausgeber LAP LAMBERT Academic Publishing
    • Gewicht 96g
    • Untertitel IN HIGH-DIMENSIONAL HYPERBOLIC SPACES
    • Autor Vladimir Balcan
    • Titel PROPERTIES OF BÖRÖCZKY'S CONSTRUCTION
    • Veröffentlichung 20.06.2023
    • ISBN 6206181413
    • Format Kartonierter Einband
    • EAN 9786206181415
    • Jahr 2023
    • Größe H220mm x B150mm x T4mm
    • Anzahl Seiten 52
    • GTIN 09786206181415

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470