Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Prostate Segmentation in Ultrasound and Magnetic Resonance Images
Details
Prostate segmentation in trans rectal ultrasound (TRUS) and magnetic resonance images (MRI) facilitates volume estimation, multi-modal image registration, surgical planing and image guided prostate biopsies. The objective of this work was to develop shape and region prior deformable models for accurate, robust and computationally efficient prostate segmentation in TRUS and MRI images. Primary contribution of this work was in adopting a probabilistic learning approach to achieve soft classification of the prostate for automatic initialization and evolution of a shape and region prior deformable models for prostate segmentation in TRUS images. Region based energy was determined from region based statistics of the posterior probabilities. Graph cut energy minimization framework was adopted for prostate segmentation in MRI. Posterior probabilities obtained in a supervised learning schema and from a probabilistic segmentation of the prostate using an atlas are fused in logarithmic domain to reduce segmentation error. Finally a graph cut energy minimization in the stochastic framework achieves prostate segmentation in MRI.
Autorentext
Dr. Soumya Ghose is senior research associate in the Department of Biomedical Engineering at Case Western Reserve University. His research interest includes machine learning, medical image segmentation and registration. Prof. Meriaudeau and Dr. Olivier have extensive research experience in the domain of medical image processing and machine learning
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783659838453
- Herausgeber SPS
- Anzahl Seiten 152
- Genre Software
- Sprache Englisch
- Gewicht 244g
- Autor Soumya Ghose , Arnau Olivier , Fabrice Meriaudeau
- Größe H220mm x B150mm x T10mm
- Jahr 2016
- EAN 9783659838453
- Format Kartonierter Einband
- ISBN 3659838454
- Veröffentlichung 16.06.2016
- Titel Prostate Segmentation in Ultrasound and Magnetic Resonance Images