Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Python for Graph and Network Analysis
Details
This research monograph provides the means to learn the theory and practice of graph and network analysis using the Python programming language. The social network analysis techniques, included, will help readers to efficiently analyze social data from Twitter, Facebook, LiveJournal, GitHub and many others at three levels of depth: ego, group, and community. They will be able to analyse militant and revolutionary networks and candidate networks during elections. For instance, they will learn how the Ebola virus spread through communities.
Practically, the book is suitable for courses on social network analysis in all disciplines that use social methodology. In the study of social networks, social network analysis makes an interesting interdisciplinary research area, where computer scientists and sociologists bring their competence to a level that will enable them to meet the challenges of this fast-developing field. Computer scientists have the knowledge to parse andprocess data while sociologists have the experience that is required for efficient data editing and interpretation. Social network analysis has successfully been applied in different fields such as health, cyber security, business, animal social networks, information retrieval, and communications.
Equips readers to practice network analysis using Python Illustrates the complete process of network-level analysis Treats both theoretical and practical aspects of detecting cohesive groups in networks Offers a step-by-step guide on how to create social networks from scratch
Inhalt
Theoretical Concepts of Network Analysis.- Network Basics.- Graph Theory.- Social Networks.- Node-Level Analysis.- Group-Level Analysis.- Network-Level Analysis.- Information Diffusion in Social Networks.- Appendix A: Python Tutorial.- Appendix B: NetworkX Tutorial
Weitere Informationen
- Allgemeine Informationen
- GTIN 09783319530031
- Genre Information Technology
- Auflage 1st edition 2017
- Lesemotiv Verstehen
- Anzahl Seiten 220
- Größe H241mm x B160mm x T18mm
- Jahr 2017
- EAN 9783319530031
- Format Fester Einband
- ISBN 3319530038
- Veröffentlichung 29.03.2017
- Titel Python for Graph and Network Analysis
- Autor Seifedine Kadry , Mohammed Zuhair Al-Taie
- Untertitel Advanced Information and Knowledge Processing
- Gewicht 500g
- Herausgeber Springer International Publishing
- Sprache Englisch