q-Fractional Calculus and Equations

CHF 79.15
Auf Lager
SKU
PRLVIQDO0GC
Stock 1 Verfügbar
Geliefert zwischen Mi., 28.01.2026 und Do., 29.01.2026

Details

This nine-chapter monograph introduces a rigorous investigation of q-difference operators in standard and fractional settings. It starts with elementary calculus of q-differences and integration of Jackson's type before turning to q-difference equations. The existence and uniqueness theorems are derived using successive approximations, leading to systems of equations with retarded arguments. Regular q-SturmLiouville theory is also introduced; Green's function is constructed and the eigenfunction expansion theorem is given. The monograph also discusses some integral equations of Volterra and Abel type, as introductory material for the study of fractional q-calculi. Hence fractional q-calculi of the types RiemannLiouville; GrünwaldLetnikov; Caputo; ErdélyiKober and Weyl are defined analytically. Fractional q-Leibniz rules with applications in q-series are also obtained with rigorous proofs of the formal results of Al-Salam-Verma, which remained unproved for decades. In working towards the investigation of q-fractional difference equations; families of q-Mittag-Leffler functions are defined and their properties are investigated, especially the q-MellinBarnes integral and Hankel contour integral representation of the q-Mittag-Leffler functions under consideration, the distribution, asymptotic and reality of their zeros, establishing q-counterparts of Wiman's results. Fractional q-difference equations are studied; existence and uniqueness theorems are given and classes of Cauchy-type problems are completely solved in terms of families of q-Mittag-Leffler functions. Among many q-analogs of classical results and concepts, q-Laplace, q-Mellin and q 2 -Fourier transforms are studied and their applications are investigated.


First detailed rigorous study of q-calculi First detailed rigorous study of q-difference equations First detailed rigorous study of q-fractional calculi and equations Proofs of many classical unproved results are given Illustrative examples and figures helps readers to digest the new approaches Includes supplementary material: sn.pub/extras Includes supplementary material: sn.pub/extras

Inhalt
1 Preliminaries.- 2 q-Difference Equations.- 3 q-Sturm Liouville Problems.- 4 RiemannLiouville q-Fractional Calculi.- 5 Other q-Fractional Calculi.- 6 Fractional q-Leibniz Rule and Applications.- 7 q-MittagLeffler Functions.- 8 Fractional q-Difference Equations.- 9 Applications of q-Integral Transforms.

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09783642308970
    • Sprache Englisch
    • Auflage 2012
    • Größe H235mm x B155mm x T19mm
    • Jahr 2012
    • EAN 9783642308970
    • Format Kartonierter Einband
    • ISBN 364230897X
    • Veröffentlichung 26.08.2012
    • Titel q-Fractional Calculus and Equations
    • Autor Zeinab S. Mansour , Mahmoud H. Annaby
    • Untertitel Lecture Notes in Mathematics 2056
    • Gewicht 517g
    • Herausgeber Springer Berlin Heidelberg
    • Anzahl Seiten 340
    • Lesemotiv Verstehen
    • Genre Mathematik

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470
Kundenservice: customerservice@avento.shop | Tel: +41 44 248 38 38