Wir verwenden Cookies und Analyse-Tools, um die Nutzerfreundlichkeit der Internet-Seite zu verbessern und für Marketingzwecke. Wenn Sie fortfahren, diese Seite zu verwenden, nehmen wir an, dass Sie damit einverstanden sind. Zur Datenschutzerklärung.
Quotient Group
CHF 49.55
Auf Lager
SKU
OOSLBAGH6TT
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025
Details
High Quality Content by WIKIPEDIA articles! In mathematics, specifically group theory, a quotient group (or factor group) is a group obtained by identifying together elements of a larger group using an equivalence relation. For example, the cyclic group of addition modulo n can be obtained from the integers by identifying elements that differ by a multiple of n and defining a group structure that operates on each such class (known as a congruence class) as a single entity. In a quotient of a group, the equivalence class of the identity element is always a normal subgroup of the original group, and the other equivalence classes are the cosets of this normal subgroup. The resulting quotient is written G / N, where G is the original group and N is the normal subgroup. (This is pronounced G mod N, where mod is short for modulo.)
Weitere Informationen
- Allgemeine Informationen
- GTIN 09786130320447
- Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
- Sprache Englisch
- Genre Physik & Astronomie
- Größe H220mm x B150mm x T6mm
- Jahr 2009
- EAN 9786130320447
- Format Kartonierter Einband
- ISBN 978-613-0-32044-7
- Titel Quotient Group
- Untertitel Mathematics, Group tTheory, Equivalence Relation, Cyclic Group, Integer, Identity Element, Normal Subgroup, Group hHomomorphism, Category tTheory, Quotient rRing
- Gewicht 171g
- Herausgeber Betascript Publishers
- Anzahl Seiten 104
Bewertungen
Schreiben Sie eine Bewertung