Quotient Group

CHF 49.55
Auf Lager
SKU
OOSLBAGH6TT
Stock 1 Verfügbar
Geliefert zwischen Mi., 26.11.2025 und Do., 27.11.2025

Details

High Quality Content by WIKIPEDIA articles! In mathematics, specifically group theory, a quotient group (or factor group) is a group obtained by identifying together elements of a larger group using an equivalence relation. For example, the cyclic group of addition modulo n can be obtained from the integers by identifying elements that differ by a multiple of n and defining a group structure that operates on each such class (known as a congruence class) as a single entity. In a quotient of a group, the equivalence class of the identity element is always a normal subgroup of the original group, and the other equivalence classes are the cosets of this normal subgroup. The resulting quotient is written G / N, where G is the original group and N is the normal subgroup. (This is pronounced G mod N, where mod is short for modulo.)

Weitere Informationen

  • Allgemeine Informationen
    • GTIN 09786130320447
    • Editor Lambert M. Surhone, Miriam T. Timpledon, Susan F. Marseken
    • Sprache Englisch
    • Genre Physik & Astronomie
    • Größe H220mm x B150mm x T6mm
    • Jahr 2009
    • EAN 9786130320447
    • Format Kartonierter Einband
    • ISBN 978-613-0-32044-7
    • Titel Quotient Group
    • Untertitel Mathematics, Group tTheory, Equivalence Relation, Cyclic Group, Integer, Identity Element, Normal Subgroup, Group hHomomorphism, Category tTheory, Quotient rRing
    • Gewicht 171g
    • Herausgeber Betascript Publishers
    • Anzahl Seiten 104

Bewertungen

Schreiben Sie eine Bewertung
Nur registrierte Benutzer können Bewertungen schreiben. Bitte loggen Sie sich ein oder erstellen Sie ein Konto.
Made with ♥ in Switzerland | ©2025 Avento by Gametime AG
Gametime AG | Hohlstrasse 216 | 8004 Zürich | Schweiz | UID: CHE-112.967.470